Cargando…
Deep Learning-Based Detection and Diagnosis of Subarachnoid Hemorrhage
Subarachnoid hemorrhage (SAH) is one of the critical and severe neurological diseases with high morbidity and mortality. Head computed tomography (CT) is among the preferred methods for the diagnosis of SAH, which is confirmed by CT showing high-density shadow in the subarachnoid space. Analysis of...
Autores principales: | Gou, Xiaohong, He, Xuenong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629635/ https://www.ncbi.nlm.nih.gov/pubmed/34853673 http://dx.doi.org/10.1155/2021/9639419 |
Ejemplares similares
-
Prediction Value of Epilepsy Secondary to Inferior Cavity Hemorrhage Based on Scalp EEG Wave Pattern in Deep Learning
por: Jiang, Shishuang, et al.
Publicado: (2022) -
Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning
por: Shahzad, Rahil, et al.
Publicado: (2020) -
Deep learning assistance increases the detection sensitivity of radiologists for secondary intracranial aneurysms in subarachnoid hemorrhage
por: Pennig, Lenhard, et al.
Publicado: (2021) -
Artificial Intelligence Trained by Deep Learning Can Improve Computed Tomography Diagnosis of Nontraumatic Subarachnoid Hemorrhage by Nonspecialists
por: NISHI, Toru, et al.
Publicado: (2021) -
Approach to the Diagnosis and Management of Subarachnoid Hemorrhage
por: Marcolini, Evie, et al.
Publicado: (2019)