Cargando…

Water Cycle Bat Algorithm and Dictionary-Based Deformable Model for Lung Tumor Segmentation

Among the different types of cancers, lung cancer is one of the widespread diseases which causes the highest number of deaths every year. The early detection of lung cancer is very essential for increasing the survival rate in patients. Although computed tomography (CT) is the preferred choice for l...

Descripción completa

Detalles Bibliográficos
Autores principales: Shetty, Mamtha V., Jayadevappa, D., Veena, G. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629667/
https://www.ncbi.nlm.nih.gov/pubmed/34853581
http://dx.doi.org/10.1155/2021/3492099
Descripción
Sumario:Among the different types of cancers, lung cancer is one of the widespread diseases which causes the highest number of deaths every year. The early detection of lung cancer is very essential for increasing the survival rate in patients. Although computed tomography (CT) is the preferred choice for lungs imaging, sometimes CT images may produce less tumor visibility regions and unconstructive rates in tumor portions. Hence, the development of an efficient segmentation technique is necessary. In this paper, water cycle bat algorithm- (WCBA-) based deformable model approach is proposed for lung tumor segmentation. In the preprocessing stage, a median filter is used to remove the noise from the input image and to segment the lung lobe regions, and Bayesian fuzzy clustering is applied. In the proposed method, deformable model is modified by the dictionary-based algorithm to segment the lung tumor accurately. In the dictionary-based algorithm, the update equation is modified by the proposed WCBA and is designed by integrating water cycle algorithm (WCA) and bat algorithm (BA).