Cargando…
Earthquake source characterization by machine learning algorithms applied to acoustic signals
Underwater seismic events generate acoustic radiation (such as acoustic-gravity waves), that carries information about the source and can travel long distances before dissipating. Effective early warning, emergency response, and information dissemination for earthquakes and tsunamis require a rapid...
Autores principales: | Gomez, Bernabe, Kadri, Usama |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8630080/ https://www.ncbi.nlm.nih.gov/pubmed/34845274 http://dx.doi.org/10.1038/s41598-021-02483-w |
Ejemplares similares
-
Signal Processing for Parametric Acoustic Sources Applied to Underwater Communication †
por: Campo-Valera, María, et al.
Publicado: (2020) -
Forecasting Strong Subsequent Earthquakes in Greece with the Machine Learning Algorithm NESTORE
por: Anyfadi, Eleni-Apostolia, et al.
Publicado: (2023) -
Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system
por: Nishimura, Takeshi, et al.
Publicado: (2021) -
Applying Machine Learning Algorithms for the Classification of Mink Infected with Aleutian Disease Using Different Data Sources
por: Do, Duy Ngoc, et al.
Publicado: (2022) -
Pipeline Leakage Detection Using Acoustic Emission and Machine Learning Algorithms
por: Ullah, Niamat, et al.
Publicado: (2023)