Cargando…

The Effects of Acute Cardiovascular Exercise on Memory and Its Associations With Exercise-Induced Increases in Neurotrophic Factors

Due to increasing life expectancy, low-cost interventions to counteract age-related memory impairment have gained popularity. Physical activity has been shown to positively affect memory and hippocampal plasticity in rodents and humans. These effects have been proposed to be mediated by the release...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuhne, Laura A., Ksiezarczyk, Anna-Maria, Braumann, Klaus-Michael, Reer, Rüdiger, Jacobs, Thomas, Röder, Brigitte, Hötting, Kirsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8630591/
https://www.ncbi.nlm.nih.gov/pubmed/34858160
http://dx.doi.org/10.3389/fnagi.2021.750401
Descripción
Sumario:Due to increasing life expectancy, low-cost interventions to counteract age-related memory impairment have gained popularity. Physical activity has been shown to positively affect memory and hippocampal plasticity in rodents and humans. These effects have been proposed to be mediated by the release of neurotrophic factors. However, studies examining the effects of a single cardiovascular exercise session on human memory have yielded conflicting results. Moreover, it remains unclear whether exercise-induced memory enhancements are related to changes in peripheral neurotrophic factor concentrations. The present study tested whether one bout of cardiovascular exercise during an early phase of memory consolidation, compared to one bout of stretching and toning, positively affected memory. Furthermore, it was analyzed whether exercise-induced changes in the brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were related to memory enhancement after a single bout of physical exercise. Fifty healthy participants (20–40 years) were randomly assigned to either a cycling group (BIKE) or a stretching and toning group (STRETCH). Participants performed an implicit vocabulary learning task which was immediately followed by physical exercise. Memory for the learned vocabulary was tested 1–2 weeks later. To measure exercise-induced changes in serum neurotrophic factor levels, blood samples were collected at rest (baseline) and immediately after the exercise session. Results did not show a significant difference in memory between the BIKE group and the STRETCH group. However, in the BIKE group, a larger increase in BDNF and VEGF levels was observed than in the STRETCH group. Moreover, the increase in BDNF and memory performance tended to be positively related in the BIKE group. We speculate that the correlation between exercise-increased BDNF levels and memory in the cycling group may indicate an involvement of BDNF in mediating memory processes after acute cardiovascular exercise.