Cargando…

Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation?

Alcohol dependence (AD) is a condition of alcohol use disorder in which the drinkers frequently develop emotional symptoms associated with a continuous alcohol intake. AD characterized by metabolic disturbances can be quantitatively analyzed by metabolomics to identify the alterations in metabolic p...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Xiuqing, Huang, Jiaxin, Huang, Shanqing, Wen, Yuguan, Lan, Xiaochang, Wang, Xipei, Lu, Chuanli, Wang, Zhanzhang, Fan, Ni, Shang, Dewei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8630631/
https://www.ncbi.nlm.nih.gov/pubmed/34859050
http://dx.doi.org/10.3389/fmolb.2021.760669
_version_ 1784607401188524032
author Zhu, Xiuqing
Huang, Jiaxin
Huang, Shanqing
Wen, Yuguan
Lan, Xiaochang
Wang, Xipei
Lu, Chuanli
Wang, Zhanzhang
Fan, Ni
Shang, Dewei
author_facet Zhu, Xiuqing
Huang, Jiaxin
Huang, Shanqing
Wen, Yuguan
Lan, Xiaochang
Wang, Xipei
Lu, Chuanli
Wang, Zhanzhang
Fan, Ni
Shang, Dewei
author_sort Zhu, Xiuqing
collection PubMed
description Alcohol dependence (AD) is a condition of alcohol use disorder in which the drinkers frequently develop emotional symptoms associated with a continuous alcohol intake. AD characterized by metabolic disturbances can be quantitatively analyzed by metabolomics to identify the alterations in metabolic pathways. This study aimed to: i) compare the plasma metabolic profiling between healthy and AD-diagnosed individuals to reveal the altered metabolic profiles in AD, and ii) identify potential biological correlates of alcohol-dependent inpatients based on metabolomics and interpretable machine learning. Plasma samples were obtained from healthy (n = 42) and AD-diagnosed individuals (n = 43). The plasma metabolic differences between them were investigated using liquid chromatography-tandem mass spectrometry (AB SCIEX(®) QTRAP 4500 system) in different electrospray ionization modes with scheduled multiple reaction monitoring scans. In total, 59 and 52 compounds were semi-quantitatively measured in positive and negative ionization modes, respectively. In addition, 39 metabolites were identified as important variables to contribute to the classifications using an orthogonal partial least squares-discriminant analysis (OPLS-DA) (VIP > 1) and also significantly different between healthy and AD-diagnosed individuals using univariate analysis (p-value < 0.05 and false discovery rate < 0.05). Among the identified metabolites, indole-3-carboxylic acid, quinolinic acid, hydroxy-tryptophan, and serotonin were involved in the tryptophan metabolism along the indole, kynurenine, and serotonin pathways. Metabolic pathway analysis revealed significant changes or imbalances in alanine, aspartate, glutamate metabolism, which was possibly the main altered pathway related to AD. Tryptophan metabolism interactively influenced other metabolic pathways, such as nicotinate and nicotinamide metabolism. Furthermore, among the OPLS-DA-identified metabolites, normetanephrine and ascorbic acid were demonstrated as suitable biological correlates of AD inpatients from our model using an interpretable, supervised decision tree classifier algorithm. These findings indicate that the discriminatory metabolic profiles between healthy and AD-diagnosed individuals may benefit researchers in illustrating the underlying molecular mechanisms of AD. This study also highlights the approach of combining metabolomics and interpretable machine learning as a valuable tool to uncover potential biological correlates. Future studies should focus on the global analysis of the possible roles of these differential metabolites and disordered metabolic pathways in the pathophysiology of AD.
format Online
Article
Text
id pubmed-8630631
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-86306312021-12-01 Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation? Zhu, Xiuqing Huang, Jiaxin Huang, Shanqing Wen, Yuguan Lan, Xiaochang Wang, Xipei Lu, Chuanli Wang, Zhanzhang Fan, Ni Shang, Dewei Front Mol Biosci Molecular Biosciences Alcohol dependence (AD) is a condition of alcohol use disorder in which the drinkers frequently develop emotional symptoms associated with a continuous alcohol intake. AD characterized by metabolic disturbances can be quantitatively analyzed by metabolomics to identify the alterations in metabolic pathways. This study aimed to: i) compare the plasma metabolic profiling between healthy and AD-diagnosed individuals to reveal the altered metabolic profiles in AD, and ii) identify potential biological correlates of alcohol-dependent inpatients based on metabolomics and interpretable machine learning. Plasma samples were obtained from healthy (n = 42) and AD-diagnosed individuals (n = 43). The plasma metabolic differences between them were investigated using liquid chromatography-tandem mass spectrometry (AB SCIEX(®) QTRAP 4500 system) in different electrospray ionization modes with scheduled multiple reaction monitoring scans. In total, 59 and 52 compounds were semi-quantitatively measured in positive and negative ionization modes, respectively. In addition, 39 metabolites were identified as important variables to contribute to the classifications using an orthogonal partial least squares-discriminant analysis (OPLS-DA) (VIP > 1) and also significantly different between healthy and AD-diagnosed individuals using univariate analysis (p-value < 0.05 and false discovery rate < 0.05). Among the identified metabolites, indole-3-carboxylic acid, quinolinic acid, hydroxy-tryptophan, and serotonin were involved in the tryptophan metabolism along the indole, kynurenine, and serotonin pathways. Metabolic pathway analysis revealed significant changes or imbalances in alanine, aspartate, glutamate metabolism, which was possibly the main altered pathway related to AD. Tryptophan metabolism interactively influenced other metabolic pathways, such as nicotinate and nicotinamide metabolism. Furthermore, among the OPLS-DA-identified metabolites, normetanephrine and ascorbic acid were demonstrated as suitable biological correlates of AD inpatients from our model using an interpretable, supervised decision tree classifier algorithm. These findings indicate that the discriminatory metabolic profiles between healthy and AD-diagnosed individuals may benefit researchers in illustrating the underlying molecular mechanisms of AD. This study also highlights the approach of combining metabolomics and interpretable machine learning as a valuable tool to uncover potential biological correlates. Future studies should focus on the global analysis of the possible roles of these differential metabolites and disordered metabolic pathways in the pathophysiology of AD. Frontiers Media S.A. 2021-11-08 /pmc/articles/PMC8630631/ /pubmed/34859050 http://dx.doi.org/10.3389/fmolb.2021.760669 Text en Copyright © 2021 Zhu, Huang, Huang, Wen, Lan, Wang, Lu, Wang, Fan and Shang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Molecular Biosciences
Zhu, Xiuqing
Huang, Jiaxin
Huang, Shanqing
Wen, Yuguan
Lan, Xiaochang
Wang, Xipei
Lu, Chuanli
Wang, Zhanzhang
Fan, Ni
Shang, Dewei
Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation?
title Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation?
title_full Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation?
title_fullStr Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation?
title_full_unstemmed Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation?
title_short Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation?
title_sort combining metabolomics and interpretable machine learning to reveal plasma metabolic profiling and biological correlates of alcohol-dependent inpatients: what about tryptophan metabolism regulation?
topic Molecular Biosciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8630631/
https://www.ncbi.nlm.nih.gov/pubmed/34859050
http://dx.doi.org/10.3389/fmolb.2021.760669
work_keys_str_mv AT zhuxiuqing combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation
AT huangjiaxin combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation
AT huangshanqing combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation
AT wenyuguan combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation
AT lanxiaochang combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation
AT wangxipei combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation
AT luchuanli combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation
AT wangzhanzhang combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation
AT fanni combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation
AT shangdewei combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation