Cargando…
The role of protein oxidation in the development of diabetic microvascular complications
OBJECTIVE: The role of protein oxidation in the development of diabetic microvascular complications was investigated. METHODS: In total, 266 participants were split into five groups: Group 1; diabetes mellitus for at least 10 years without any complications, Group 2; diabetic nephropathy, Group 3; d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kare Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8630725/ https://www.ncbi.nlm.nih.gov/pubmed/34909589 http://dx.doi.org/10.14744/nci.2021.33341 |
Sumario: | OBJECTIVE: The role of protein oxidation in the development of diabetic microvascular complications was investigated. METHODS: In total, 266 participants were split into five groups: Group 1; diabetes mellitus for at least 10 years without any complications, Group 2; diabetic nephropathy, Group 3; diabetic neuropathy, Group 4; diabetic retinopathy, and Group 5; control group. Thiol, disulfide, ferroxidase, and ischemia-modified albumin (IMA) levels were analyzed in the serum. RESULTS: Native thiol, total thiol, and native thiol/total thiol were lower in Group 4 than Groups 1, 3, and 5 (p<0.001). However, disulfide/native thiol and disulfide/total thiol were higher in Group 4 than all other groups (p<0.001). IMA was higher in Groups 3 and 4 than all other groups (p<0.001). Ferroxidase was lower in Groups 3 and 4 than Group 2 (p<0.001). CONCLUSION: Thiol-disulfide homeostasis impairment in favor of disulfide may have a function in the progress of diabetic retinopathy. Furthermore, the disruptions of IMA and ferroxidase levels involve in the development of diabetic retinopathy and neuropathy. |
---|