Cargando…
Predicting environmentally responsive transgenerational differential DNA methylated regions (epimutations) in the genome using a hybrid deep-machine learning approach
BACKGROUND: Deep learning is an active bioinformatics artificial intelligence field that is useful in solving many biological problems, including predicting altered epigenetics such as DNA methylation regions. Deep learning (DL) can learn an informative representation that addresses the need for def...
Autores principales: | Mavaie, Pegah, Holder, Lawrence, Beck, Daniel, Skinner, Michael K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8630850/ https://www.ncbi.nlm.nih.gov/pubmed/34847877 http://dx.doi.org/10.1186/s12859-021-04491-z |
Ejemplares similares
-
Genomic Clustering of differential DNA methylated regions (epimutations) associated with the epigenetic transgenerational inheritance of disease and phenotypic variation
por: Haque, M. Muksitul, et al.
Publicado: (2016) -
Hybrid deep learning approach to improve classification of low-volume high-dimensional data
por: Mavaie, Pegah, et al.
Publicado: (2023) -
Transgenerational sperm DNA methylation epimutation developmental origins following ancestral vinclozolin exposure
por: Skinner, Michael K., et al.
Publicado: (2019) -
Genome-Wide Locations of Potential Epimutations Associated with Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Using a Sequential Machine Learning Prediction Approach
por: Haque, M. Muksitul, et al.
Publicado: (2015) -
Identification of Genomic Features in Environmentally Induced Epigenetic Transgenerational Inherited Sperm Epimutations
por: Guerrero-Bosagna, Carlos, et al.
Publicado: (2014)