Cargando…
Numerical Simulation of the Effect of Particle and Substrate Preheating on Porosity Level and Residual Stress of As-sprayed Ti6Al4V Components
Nowadays, in the aerospace industry, additive manufacturing and repairing damaged metallic components like Ti6Al4V samples have grabbed attention. Among repairing techniques, solid-state additive manufacturing processes like cold spray are promising because of their unique benefits such as high depo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631265/ http://dx.doi.org/10.1007/s11666-021-01286-9 |
_version_ | 1784607518964580352 |
---|---|
author | Khamsepour, P. Moreau, C. Dolatabadi, A. |
author_facet | Khamsepour, P. Moreau, C. Dolatabadi, A. |
author_sort | Khamsepour, P. |
collection | PubMed |
description | Nowadays, in the aerospace industry, additive manufacturing and repairing damaged metallic components like Ti6Al4V samples have grabbed attention. Among repairing techniques, solid-state additive manufacturing processes like cold spray are promising because of their unique benefits such as high deposition rate with almost no oxidation in the deposited materials. However, its main drawback is the level of porosity of as-sprayed samples. To increase density and inter-particle bonding, deposited particles must go through more degrees of deformation by increasing particle velocity and particle temperature. In order to increase these two parameters simultaneously, high-velocity air fuel (HVAF) can be utilized. For understanding the effect of using HVAF on particle deformation, a proper elastic-plastic finite-element-based simulation is required. The obtained outcomes show that enhancing particle velocity and providing more kinetic energy will increase particle deformation and sample density. Importantly, increasing particle temperature will seize particle deformation by thermal softening effect, i.e., enhancing as-sprayed sample density, while rising substrate temperature by preheating will soften the substrate resulting in a decrease in particle deformation. |
format | Online Article Text |
id | pubmed-8631265 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-86312652021-11-30 Numerical Simulation of the Effect of Particle and Substrate Preheating on Porosity Level and Residual Stress of As-sprayed Ti6Al4V Components Khamsepour, P. Moreau, C. Dolatabadi, A. J Therm Spray Tech Peer Reviewed Nowadays, in the aerospace industry, additive manufacturing and repairing damaged metallic components like Ti6Al4V samples have grabbed attention. Among repairing techniques, solid-state additive manufacturing processes like cold spray are promising because of their unique benefits such as high deposition rate with almost no oxidation in the deposited materials. However, its main drawback is the level of porosity of as-sprayed samples. To increase density and inter-particle bonding, deposited particles must go through more degrees of deformation by increasing particle velocity and particle temperature. In order to increase these two parameters simultaneously, high-velocity air fuel (HVAF) can be utilized. For understanding the effect of using HVAF on particle deformation, a proper elastic-plastic finite-element-based simulation is required. The obtained outcomes show that enhancing particle velocity and providing more kinetic energy will increase particle deformation and sample density. Importantly, increasing particle temperature will seize particle deformation by thermal softening effect, i.e., enhancing as-sprayed sample density, while rising substrate temperature by preheating will soften the substrate resulting in a decrease in particle deformation. Springer US 2021-11-30 2022 /pmc/articles/PMC8631265/ http://dx.doi.org/10.1007/s11666-021-01286-9 Text en © ASM International 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Peer Reviewed Khamsepour, P. Moreau, C. Dolatabadi, A. Numerical Simulation of the Effect of Particle and Substrate Preheating on Porosity Level and Residual Stress of As-sprayed Ti6Al4V Components |
title | Numerical Simulation of the Effect of Particle and Substrate Preheating on Porosity Level and Residual Stress of As-sprayed Ti6Al4V Components |
title_full | Numerical Simulation of the Effect of Particle and Substrate Preheating on Porosity Level and Residual Stress of As-sprayed Ti6Al4V Components |
title_fullStr | Numerical Simulation of the Effect of Particle and Substrate Preheating on Porosity Level and Residual Stress of As-sprayed Ti6Al4V Components |
title_full_unstemmed | Numerical Simulation of the Effect of Particle and Substrate Preheating on Porosity Level and Residual Stress of As-sprayed Ti6Al4V Components |
title_short | Numerical Simulation of the Effect of Particle and Substrate Preheating on Porosity Level and Residual Stress of As-sprayed Ti6Al4V Components |
title_sort | numerical simulation of the effect of particle and substrate preheating on porosity level and residual stress of as-sprayed ti6al4v components |
topic | Peer Reviewed |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631265/ http://dx.doi.org/10.1007/s11666-021-01286-9 |
work_keys_str_mv | AT khamsepourp numericalsimulationoftheeffectofparticleandsubstratepreheatingonporositylevelandresidualstressofassprayedti6al4vcomponents AT moreauc numericalsimulationoftheeffectofparticleandsubstratepreheatingonporositylevelandresidualstressofassprayedti6al4vcomponents AT dolatabadia numericalsimulationoftheeffectofparticleandsubstratepreheatingonporositylevelandresidualstressofassprayedti6al4vcomponents |