Cargando…
Data harmonization and data pooling from cohort studies: a practical approach for data management
Data pooling from pre-existing datasets can be useful to increase study sample size and statistical power in order to answer a research question. However, individual datasets may contain variables that measure the same construct differently, posing challenges for data pooling. Variable harmonization...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Swansea University
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631396/ https://www.ncbi.nlm.nih.gov/pubmed/34888420 http://dx.doi.org/10.23889/ijpds.v6i1.1680 |
Sumario: | Data pooling from pre-existing datasets can be useful to increase study sample size and statistical power in order to answer a research question. However, individual datasets may contain variables that measure the same construct differently, posing challenges for data pooling. Variable harmonization, an approach that can generate comparable datasets from heterogeneous sources, can address this issue in some circumstances. As an illustrative example, this paper describes the data harmonization strategies that helped generate comparable datasets across two Canadian pregnancy cohort studies: All Our Families; and the Alberta Pregnancy Outcomes and Nutrition. Variables were harmonized considering multiple features across the datasets: the construct measured; question asked/response options; the measurement scale used; the frequency of measurement; timing of measurement, and the data structure. Completely matching, partially matching, and completely un-matching variables across the datasets were determined based on these features. Variables that were an exact match were pooled as is. Partially matching variables were harmonized or processed under a common format across the datasets considering the frequency of measurement, the timing of measurement, the measurement scale used, and response options. Variables that were completely unmatching could not be harmonized into a single variable. The variable harmonization strategies that were used to generate comparable cohort datasets for data pooling are applicable to other data sources. Future studies may employ or evaluate these strategies, which permit researchers to answer novel research questions in a statistically efficient, timely, and cost-efficient manner that could not be achieved using a single data source. |
---|