Cargando…
Time-Series Growth Prediction Model Based on U-Net and Machine Learning in Arabidopsis
Yield prediction for crops is essential information for food security. A high-throughput phenotyping platform (HTPP) generates the data of the complete life cycle of a plant. However, the data are rarely used for yield prediction because of the lack of quality image analysis methods, yield data asso...
Autores principales: | Chang, Sungyul, Lee, Unseok, Hong, Min Jeong, Jo, Yeong Deuk, Kim, Jin-Baek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631871/ https://www.ncbi.nlm.nih.gov/pubmed/34858446 http://dx.doi.org/10.3389/fpls.2021.721512 |
Ejemplares similares
-
High-Throughput Phenotyping (HTP) Data Reveal Dosage Effect at Growth Stages in Arabidopsis thaliana Irradiated by Gamma Rays
por: Chang, Sungyul, et al.
Publicado: (2020) -
Arabidopsis U2AF65 Regulates Flowering Time and the Growth of Pollen Tubes
por: Park, Hyo-Young, et al.
Publicado: (2019) -
Mutagenic Effect of Proton Beams Characterized by Phenotypic Analysis and Whole Genome Sequencing in Arabidopsis
por: Lee, Sang Woo, et al.
Publicado: (2021) -
Image-Based Machine Learning Characterizes Root Nodule in Soybean Exposed to Silicon
por: Chung, Yong Suk, et al.
Publicado: (2020) -
An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis
por: Lee, Unseok, et al.
Publicado: (2018)