Cargando…
Single-Trial MEG Data Can Be Denoised Through Cross-Subject Predictive Modeling
A pervasive challenge in brain imaging is the presence of noise that hinders investigation of underlying neural processes, with Magnetoencephalography (MEG) in particular having very low Signal-to-Noise Ratio (SNR). The established strategy to increase MEG's SNR involves averaging multiple repe...
Autores principales: | Ravishankar, Srinivas, Toneva, Mariya, Wehbe, Leila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632362/ https://www.ncbi.nlm.nih.gov/pubmed/34858157 http://dx.doi.org/10.3389/fncom.2021.737324 |
Ejemplares similares
-
Signal denoising through topographic modularity of neural circuits
por: Zajzon, Barna, et al.
Publicado: (2023) -
MEG and EEG data analysis with MNE-Python
por: Gramfort, Alexandre, et al.
Publicado: (2013) -
Bayesian analysis of phase data in EEG and MEG
por: Dimmock, Sydney, et al.
Publicado: (2023) -
Cognitive Impairments in Schizophrenia as Assessed Through Activation and Connectivity Measures of Magnetoencephalography (MEG) Data
por: Hinkley, Leighton B. N., et al.
Publicado: (2010) -
Thalamo-cortical cross-frequency coupling detected with MEG
por: van Wijk, Bernadette C. M., et al.
Publicado: (2014)