Cargando…
Action Intention Understanding EEG Signal Classification Based on Improved Discriminative Spatial Patterns
OBJECTIVE: Action intention understanding EEG signal classification is indispensable for investigating human-computer interactions and intention understanding mechanisms. Numerous investigations on classification tasks extract classification features by using graph theory metrics; however, the class...
Autores principales: | Xiong, Xingliang, Yu, Hua, Wang, Haixian, Jiang, Jiuchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632405/ https://www.ncbi.nlm.nih.gov/pubmed/34858491 http://dx.doi.org/10.1155/2021/1462369 |
Ejemplares similares
-
Weighted Brain Network Metrics for Decoding Action Intention Understanding Based on EEG
por: Xiong, Xingliang, et al.
Publicado: (2020) -
Multilinear Discriminative Spatial Patterns for Movement-Related Cortical Potential Based on EEG Classification with Tensor Representation
por: Cai, Qian, et al.
Publicado: (2021) -
An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information
por: Kumar, Shiu, et al.
Publicado: (2017) -
Classification of EEG Signals Based on Pattern Recognition Approach
por: Amin, Hafeez Ullah, et al.
Publicado: (2017) -
Classification of Movement Intention Using Independent Components of Premovement EEG
por: Kim, Hyeonseok, et al.
Publicado: (2019)