Cargando…

Impact of natural ventilation on exposure to SARS-CoV 2 in indoor/semi-indoor terraces using CO(2) concentrations as a proxy

Nowadays, it is necessary a better airborne transmission understanding of respiratory diseases in shared indoor and semi-indoor environments with natural ventilation in order to adopt effective people's health protection measures. The aim of this work is to evaluate the relative exposure to SAR...

Descripción completa

Detalles Bibliográficos
Autores principales: Rivas, Esther, Santiago, Jose Luis, Martín, Fernando, Martilli, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632854/
http://dx.doi.org/10.1016/j.jobe.2021.103725
Descripción
Sumario:Nowadays, it is necessary a better airborne transmission understanding of respiratory diseases in shared indoor and semi-indoor environments with natural ventilation in order to adopt effective people's health protection measures. The aim of this work is to evaluate the relative exposure to SARS-CoV 2 in a set of virtual scenarios representing enclosed and semi-enclosed terraces under different outdoor meteorological conditions. For this purpose, indoor CO(2) concentration is used as a proxy for the risk assessment. Airflow and people exhaled CO(2) in different scenarios are simulated through Computational Fluid Dynamics (CFD) modelling with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. Both spatial average concentrations and local concentrations are analyzed. In general, spatial average concentrations decrease as ventilation increases, however, depending on the people arrangement inside the terrace, spatial average concentrations and local concentrations can be very different. Therefore, for assessing the relative exposure to SARS-CoV 2 it is necessary to consider the indoor flow patterns between infectors and susceptibles. This research provides detailed information about CO(2) dispersion in enclosed/semi-enclosed scenarios, which can be very useful for reducing the transmission risk through better natural ventilation designs and improving the classic risk models since it allows to check their hypotheses in real-world scenarios. Although CFD ventilation studies in indoor/semi-indoor environments have been already addressed in the literature, this research is focused on restaurant terraces, scenarios scarcely investigated. Likewise, one of the novelties of this study is to take into account the outdoor meteorological conditions to appropriately simulate natural ventilation.