Cargando…
Improving the Classification of Alzheimer’s Disease Using Hybrid Gene Selection Pipeline and Deep Learning
Alzheimer’s is a progressive, irreversible, neurodegenerative brain disease. Even with prominent symptoms, it takes years to notice, decode, and reveal Alzheimer’s. However, advancements in technologies, such as imaging techniques, help in early diagnosis. Still, sometimes the results are inaccurate...
Autores principales: | Mahendran, Nivedhitha, Vincent, P. M. Durai Raj, Srinivasan, Kathiravan, Chang, Chuan-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632950/ https://www.ncbi.nlm.nih.gov/pubmed/34868275 http://dx.doi.org/10.3389/fgene.2021.784814 |
Ejemplares similares
-
Machine Learning Based Computational Gene Selection Models: A Survey, Performance Evaluation, Open Issues, and Future Research Directions
por: Mahendran, Nivedhitha, et al.
Publicado: (2020) -
Deep belief network-based approach for detecting Alzheimer's disease using the multi-omics data
por: Mahendran, Nivedhitha, et al.
Publicado: (2023) -
Deep Learning Assisted Neonatal Cry Classification via Support Vector Machine Models
por: K, Ashwini, et al.
Publicado: (2021) -
Performance Assessment of Certain Machine Learning Models for Predicting the Major Depressive Disorder among IT Professionals during Pandemic times
por: Vincent, P. M. Durai Raj, et al.
Publicado: (2021) -
Sensor-Assisted Weighted Average Ensemble Model for Detecting Major Depressive Disorder
por: Mahendran, Nivedhitha, et al.
Publicado: (2019)