Cargando…

Formation Mechanism of Well-Ordered Densely Packed Nanoparticle Superlattices Deposited from Gas Phase on Template-Free Surfaces

Superlattices of nanoparticles are generally produced based on solution chemistry processes. In this paper, we demonstrate that self-assembled monolayer structures of nanoparticles with superlattice periodicities can also be produced on template-free surfaces in the gas-phase cluster beam deposition...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chang, Liu, Fei, Jin, Chen, Zhang, Sishi, Zhang, Lianhua, Han, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633269/
https://www.ncbi.nlm.nih.gov/pubmed/34850309
http://dx.doi.org/10.1186/s11671-021-03635-7
Descripción
Sumario:Superlattices of nanoparticles are generally produced based on solution chemistry processes. In this paper, we demonstrate that self-assembled monolayer structures of nanoparticles with superlattice periodicities can also be produced on template-free surfaces in the gas-phase cluster beam deposition process. It is found that the packing of Fe nanoparticles corresponds to an average of two-dimensional densely packed lattice with a hexagonal summary. By controlling the nanoparticle coverage, the two-dimensional densely packed monolayer morphology can spread to the whole substrate surface being deposited. A formation mechanism of the ordered monolayers is proposed. The densely packed morphologies are formed by the balance between the diffusion rate of the nanoparticles and their filling speed on the substrate surface determined by the deposition rate, and the ordering of the nanoparticle arrays is driven by the inter-particle attractive interactions. The model is strongly supported by a series of carefully designed cluster deposition experiments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-021-03635-7.