Cargando…

Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits

We develop a Bayesian model (BayesRR-RC) that provides robust SNP-heritability estimation, an alternative to marker discovery, and accurate genomic prediction, taking 22 seconds per iteration to estimate 8.4 million SNP-effects and 78 SNP-heritability parameters in the UK Biobank. We find that only...

Descripción completa

Detalles Bibliográficos
Autores principales: Patxot, Marion, Banos, Daniel Trejo, Kousathanas, Athanasios, Orliac, Etienne J., Ojavee, Sven E., Moser, Gerhard, Holloway, Alexander, Sidorenko, Julia, Kutalik, Zoltan, Mägi, Reedik, Visscher, Peter M., Rönnegård, Lars, Robinson, Matthew R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633298/
https://www.ncbi.nlm.nih.gov/pubmed/34848700
http://dx.doi.org/10.1038/s41467-021-27258-9
_version_ 1784607898579501056
author Patxot, Marion
Banos, Daniel Trejo
Kousathanas, Athanasios
Orliac, Etienne J.
Ojavee, Sven E.
Moser, Gerhard
Holloway, Alexander
Sidorenko, Julia
Kutalik, Zoltan
Mägi, Reedik
Visscher, Peter M.
Rönnegård, Lars
Robinson, Matthew R.
author_facet Patxot, Marion
Banos, Daniel Trejo
Kousathanas, Athanasios
Orliac, Etienne J.
Ojavee, Sven E.
Moser, Gerhard
Holloway, Alexander
Sidorenko, Julia
Kutalik, Zoltan
Mägi, Reedik
Visscher, Peter M.
Rönnegård, Lars
Robinson, Matthew R.
author_sort Patxot, Marion
collection PubMed
description We develop a Bayesian model (BayesRR-RC) that provides robust SNP-heritability estimation, an alternative to marker discovery, and accurate genomic prediction, taking 22 seconds per iteration to estimate 8.4 million SNP-effects and 78 SNP-heritability parameters in the UK Biobank. We find that only ≤10% of the genetic variation captured for height, body mass index, cardiovascular disease, and type 2 diabetes is attributable to proximal regulatory regions within 10kb upstream of genes, while 12-25% is attributed to coding regions, 32–44% to introns, and 22-28% to distal 10-500kb upstream regions. Up to 24% of all cis and coding regions of each chromosome are associated with each trait, with over 3,100 independent exonic and intronic regions and over 5,400 independent regulatory regions having ≥95% probability of contributing ≥0.001% to the genetic variance of these four traits. Our open-source software (GMRM) provides a scalable alternative to current approaches for biobank data.
format Online
Article
Text
id pubmed-8633298
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86332982021-12-15 Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits Patxot, Marion Banos, Daniel Trejo Kousathanas, Athanasios Orliac, Etienne J. Ojavee, Sven E. Moser, Gerhard Holloway, Alexander Sidorenko, Julia Kutalik, Zoltan Mägi, Reedik Visscher, Peter M. Rönnegård, Lars Robinson, Matthew R. Nat Commun Article We develop a Bayesian model (BayesRR-RC) that provides robust SNP-heritability estimation, an alternative to marker discovery, and accurate genomic prediction, taking 22 seconds per iteration to estimate 8.4 million SNP-effects and 78 SNP-heritability parameters in the UK Biobank. We find that only ≤10% of the genetic variation captured for height, body mass index, cardiovascular disease, and type 2 diabetes is attributable to proximal regulatory regions within 10kb upstream of genes, while 12-25% is attributed to coding regions, 32–44% to introns, and 22-28% to distal 10-500kb upstream regions. Up to 24% of all cis and coding regions of each chromosome are associated with each trait, with over 3,100 independent exonic and intronic regions and over 5,400 independent regulatory regions having ≥95% probability of contributing ≥0.001% to the genetic variance of these four traits. Our open-source software (GMRM) provides a scalable alternative to current approaches for biobank data. Nature Publishing Group UK 2021-11-30 /pmc/articles/PMC8633298/ /pubmed/34848700 http://dx.doi.org/10.1038/s41467-021-27258-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Patxot, Marion
Banos, Daniel Trejo
Kousathanas, Athanasios
Orliac, Etienne J.
Ojavee, Sven E.
Moser, Gerhard
Holloway, Alexander
Sidorenko, Julia
Kutalik, Zoltan
Mägi, Reedik
Visscher, Peter M.
Rönnegård, Lars
Robinson, Matthew R.
Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
title Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
title_full Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
title_fullStr Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
title_full_unstemmed Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
title_short Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
title_sort probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633298/
https://www.ncbi.nlm.nih.gov/pubmed/34848700
http://dx.doi.org/10.1038/s41467-021-27258-9
work_keys_str_mv AT patxotmarion probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT banosdanieltrejo probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT kousathanasathanasios probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT orliacetiennej probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT ojaveesvene probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT mosergerhard probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT hollowayalexander probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT sidorenkojulia probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT kutalikzoltan probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT magireedik probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT visscherpeterm probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT ronnegardlars probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits
AT robinsonmatthewr probabilisticinferenceofthegeneticarchitectureunderlyingfunctionalenrichmentofcomplextraits