Cargando…

Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification

Invasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being C...

Descripción completa

Detalles Bibliográficos
Autores principales: Pezzotti, Giuseppe, Kobara, Miyuki, Asai, Tenma, Nakaya, Tamaki, Miyamoto, Nao, Adachi, Tetsuya, Yamamoto, Toshiro, Kanamura, Narisato, Ohgitani, Eriko, Marin, Elia, Zhu, Wenliang, Nishimura, Ichiro, Mazda, Osam, Nakata, Tetsuo, Makimura, Koichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633489/
https://www.ncbi.nlm.nih.gov/pubmed/34867902
http://dx.doi.org/10.3389/fmicb.2021.769597
_version_ 1784607937992327168
author Pezzotti, Giuseppe
Kobara, Miyuki
Asai, Tenma
Nakaya, Tamaki
Miyamoto, Nao
Adachi, Tetsuya
Yamamoto, Toshiro
Kanamura, Narisato
Ohgitani, Eriko
Marin, Elia
Zhu, Wenliang
Nishimura, Ichiro
Mazda, Osam
Nakata, Tetsuo
Makimura, Koichi
author_facet Pezzotti, Giuseppe
Kobara, Miyuki
Asai, Tenma
Nakaya, Tamaki
Miyamoto, Nao
Adachi, Tetsuya
Yamamoto, Toshiro
Kanamura, Narisato
Ohgitani, Eriko
Marin, Elia
Zhu, Wenliang
Nishimura, Ichiro
Mazda, Osam
Nakata, Tetsuo
Makimura, Koichi
author_sort Pezzotti, Giuseppe
collection PubMed
description Invasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being Candida auris, which exhibits resistance to all major classes of available antifungal drugs. The presently available identification methods for Candida species face a severe trade-off between testing speed and accuracy. Here, we propose and validate a machine-learning approach adapted to Raman spectroscopy as a rapid, precise, and labor-efficient method of clinical microbiology for C. auris identification and drug efficacy assessments. This paper demonstrates that the combination of Raman spectroscopy and machine learning analyses can provide an insightful and flexible mycology diagnostic tool, easily applicable on-site in the clinical environment.
format Online
Article
Text
id pubmed-8633489
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-86334892021-12-02 Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification Pezzotti, Giuseppe Kobara, Miyuki Asai, Tenma Nakaya, Tamaki Miyamoto, Nao Adachi, Tetsuya Yamamoto, Toshiro Kanamura, Narisato Ohgitani, Eriko Marin, Elia Zhu, Wenliang Nishimura, Ichiro Mazda, Osam Nakata, Tetsuo Makimura, Koichi Front Microbiol Microbiology Invasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being Candida auris, which exhibits resistance to all major classes of available antifungal drugs. The presently available identification methods for Candida species face a severe trade-off between testing speed and accuracy. Here, we propose and validate a machine-learning approach adapted to Raman spectroscopy as a rapid, precise, and labor-efficient method of clinical microbiology for C. auris identification and drug efficacy assessments. This paper demonstrates that the combination of Raman spectroscopy and machine learning analyses can provide an insightful and flexible mycology diagnostic tool, easily applicable on-site in the clinical environment. Frontiers Media S.A. 2021-11-12 /pmc/articles/PMC8633489/ /pubmed/34867902 http://dx.doi.org/10.3389/fmicb.2021.769597 Text en Copyright © 2021 Pezzotti, Kobara, Asai, Nakaya, Miyamoto, Adachi, Yamamoto, Kanamura, Ohgitani, Marin, Zhu, Nishimura, Mazda, Nakata and Makimura. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Pezzotti, Giuseppe
Kobara, Miyuki
Asai, Tenma
Nakaya, Tamaki
Miyamoto, Nao
Adachi, Tetsuya
Yamamoto, Toshiro
Kanamura, Narisato
Ohgitani, Eriko
Marin, Elia
Zhu, Wenliang
Nishimura, Ichiro
Mazda, Osam
Nakata, Tetsuo
Makimura, Koichi
Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title_full Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title_fullStr Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title_full_unstemmed Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title_short Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification
title_sort raman imaging of pathogenic candida auris: visualization of structural characteristics and machine-learning identification
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633489/
https://www.ncbi.nlm.nih.gov/pubmed/34867902
http://dx.doi.org/10.3389/fmicb.2021.769597
work_keys_str_mv AT pezzottigiuseppe ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT kobaramiyuki ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT asaitenma ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT nakayatamaki ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT miyamotonao ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT adachitetsuya ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT yamamototoshiro ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT kanamuranarisato ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT ohgitanieriko ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT marinelia ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT zhuwenliang ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT nishimuraichiro ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT mazdaosam ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT nakatatetsuo ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification
AT makimurakoichi ramanimagingofpathogeniccandidaaurisvisualizationofstructuralcharacteristicsandmachinelearningidentification