Cargando…
Multilayer regulatory landscape during pattern‐triggered immunity in rice
Upon fungal and bacterial pathogen attack, plants launch pattern‐triggered immunity (PTI) by recognizing pathogen‐associated molecular patterns (PAMPs) to defend against pathogens. Although PTI‐mediated response has been widely studied, a systematic understanding of the reprogrammed cellular process...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633500/ https://www.ncbi.nlm.nih.gov/pubmed/34437761 http://dx.doi.org/10.1111/pbi.13688 |
_version_ | 1784607940758470656 |
---|---|
author | Tang, Bozeng Liu, Caiyun Li, Zhiqiang Zhang, Xixi Zhou, Shaoqun Wang, Guo‐Liang Chen, Xiao‐Lin Liu, Wende |
author_facet | Tang, Bozeng Liu, Caiyun Li, Zhiqiang Zhang, Xixi Zhou, Shaoqun Wang, Guo‐Liang Chen, Xiao‐Lin Liu, Wende |
author_sort | Tang, Bozeng |
collection | PubMed |
description | Upon fungal and bacterial pathogen attack, plants launch pattern‐triggered immunity (PTI) by recognizing pathogen‐associated molecular patterns (PAMPs) to defend against pathogens. Although PTI‐mediated response has been widely studied, a systematic understanding of the reprogrammed cellular processes during PTI by multi‐omics analysis is lacking. In this study, we generated metabolome, transcriptome, proteome, ubiquitome and acetylome data to investigate rice (Oryza sativa) PTI responses to two PAMPs, the fungi‐derived chitin and the bacteria‐derived flg22. Integrative multi‐omics analysis uncovered convergence and divergence of rice responses to these PAMPs at multiple regulatory layers. Rice responded to chitin and flg22 in a similar manner at the transcriptome and proteome levels, but distinct at the metabolome level. We found that this was probably due to post‐translational regulation including ubiquitination and acetylation, which reshaped gene expression by modulating enzymatic activities, and possibly led to distinct metabolite profiles. We constructed regulatory atlas of metabolic pathways, including the defence‐related phenylpropanoid and flavonoid biosynthesis and linoleic acid derivative metabolism. The multi‐level regulatory network generated in this study sets the foundation for in‐depth mechanistic dissection of PTI in rice and potentially in other related poaceous crop species. |
format | Online Article Text |
id | pubmed-8633500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86335002021-12-06 Multilayer regulatory landscape during pattern‐triggered immunity in rice Tang, Bozeng Liu, Caiyun Li, Zhiqiang Zhang, Xixi Zhou, Shaoqun Wang, Guo‐Liang Chen, Xiao‐Lin Liu, Wende Plant Biotechnol J Research Articles Upon fungal and bacterial pathogen attack, plants launch pattern‐triggered immunity (PTI) by recognizing pathogen‐associated molecular patterns (PAMPs) to defend against pathogens. Although PTI‐mediated response has been widely studied, a systematic understanding of the reprogrammed cellular processes during PTI by multi‐omics analysis is lacking. In this study, we generated metabolome, transcriptome, proteome, ubiquitome and acetylome data to investigate rice (Oryza sativa) PTI responses to two PAMPs, the fungi‐derived chitin and the bacteria‐derived flg22. Integrative multi‐omics analysis uncovered convergence and divergence of rice responses to these PAMPs at multiple regulatory layers. Rice responded to chitin and flg22 in a similar manner at the transcriptome and proteome levels, but distinct at the metabolome level. We found that this was probably due to post‐translational regulation including ubiquitination and acetylation, which reshaped gene expression by modulating enzymatic activities, and possibly led to distinct metabolite profiles. We constructed regulatory atlas of metabolic pathways, including the defence‐related phenylpropanoid and flavonoid biosynthesis and linoleic acid derivative metabolism. The multi‐level regulatory network generated in this study sets the foundation for in‐depth mechanistic dissection of PTI in rice and potentially in other related poaceous crop species. John Wiley and Sons Inc. 2021-09-08 2021-12 /pmc/articles/PMC8633500/ /pubmed/34437761 http://dx.doi.org/10.1111/pbi.13688 Text en © 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Tang, Bozeng Liu, Caiyun Li, Zhiqiang Zhang, Xixi Zhou, Shaoqun Wang, Guo‐Liang Chen, Xiao‐Lin Liu, Wende Multilayer regulatory landscape during pattern‐triggered immunity in rice |
title | Multilayer regulatory landscape during pattern‐triggered immunity in rice |
title_full | Multilayer regulatory landscape during pattern‐triggered immunity in rice |
title_fullStr | Multilayer regulatory landscape during pattern‐triggered immunity in rice |
title_full_unstemmed | Multilayer regulatory landscape during pattern‐triggered immunity in rice |
title_short | Multilayer regulatory landscape during pattern‐triggered immunity in rice |
title_sort | multilayer regulatory landscape during pattern‐triggered immunity in rice |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633500/ https://www.ncbi.nlm.nih.gov/pubmed/34437761 http://dx.doi.org/10.1111/pbi.13688 |
work_keys_str_mv | AT tangbozeng multilayerregulatorylandscapeduringpatterntriggeredimmunityinrice AT liucaiyun multilayerregulatorylandscapeduringpatterntriggeredimmunityinrice AT lizhiqiang multilayerregulatorylandscapeduringpatterntriggeredimmunityinrice AT zhangxixi multilayerregulatorylandscapeduringpatterntriggeredimmunityinrice AT zhoushaoqun multilayerregulatorylandscapeduringpatterntriggeredimmunityinrice AT wangguoliang multilayerregulatorylandscapeduringpatterntriggeredimmunityinrice AT chenxiaolin multilayerregulatorylandscapeduringpatterntriggeredimmunityinrice AT liuwende multilayerregulatorylandscapeduringpatterntriggeredimmunityinrice |