Cargando…
Explore Protein Conformational Space With Variational Autoencoder
Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational a...
Autores principales: | Tian, Hao, Jiang, Xi, Trozzi, Francesco, Xiao, Sian, Larson, Eric C., Tao, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633506/ https://www.ncbi.nlm.nih.gov/pubmed/34869602 http://dx.doi.org/10.3389/fmolb.2021.781635 |
Ejemplares similares
-
PASSer2.0: Accurate Prediction of Protein Allosteric Sites Through Automated Machine Learning
por: Xiao, Sian, et al.
Publicado: (2022) -
Sampling of Protein Conformational Space Using Hybrid Simulations: A Critical Assessment of Recent Methods
por: Kaynak, Burak T., et al.
Publicado: (2022) -
DESP: Deep Enhanced Sampling of Proteins’ Conformation Spaces Using AI-Inspired Biasing Forces
por: Salawu, Emmanuel Oluwatobi
Publicado: (2021) -
How round is a protein? Exploring protein structures for globularity using conformal mapping
por: Hass, Joel, et al.
Publicado: (2014) -
Challenges in predicting stabilizing variations: An exploration
por: Benevenuta, Silvia, et al.
Publicado: (2023)