Cargando…

Sustained delivery of neurotrophic factors to treat spinal cord injury

Acute spinal cord injury (SCI) is a devastating condition that results in tremendous physical and psychological harm and a series of socioeconomic problems. Although neurons in the spinal cord need neurotrophic factors for their survival and development to reestablish their connections with their or...

Descripción completa

Detalles Bibliográficos
Autores principales: Muheremu, Aikeremujiang, Shu, Li, Liang, Jing, Aili, Abudunaibi, Jiang, Kan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633588/
https://www.ncbi.nlm.nih.gov/pubmed/34900347
http://dx.doi.org/10.1515/tnsci-2020-0200
Descripción
Sumario:Acute spinal cord injury (SCI) is a devastating condition that results in tremendous physical and psychological harm and a series of socioeconomic problems. Although neurons in the spinal cord need neurotrophic factors for their survival and development to reestablish their connections with their original targets, endogenous neurotrophic factors are scarce and the sustainable delivery of exogeneous neurotrophic factors is challenging. The widely studied neurotrophic factors such as brain-derived neurotrophic factor, neurotrophin-3, nerve growth factor, ciliary neurotrophic factor, basic fibroblast growth factor, and glial cell-derived neurotrophic factor have a relatively short cycle that is not sufficient enough for functionally significant neural regeneration after SCI. In the past decades, scholars have tried a variety of cellular and viral vehicles as well as tissue engineering scaffolds to safely and sustainably deliver those necessary neurotrophic factors to the injury site, and achieved satisfactory neural repair and functional recovery on many occasions. Here, we review the neurotrophic factors that have been used in trials to treat SCI, and vehicles that were commonly used for their sustained delivery.