Cargando…
Active neural networks to detect mentions of changes to medication treatment in social media
OBJECTIVE: We address a first step toward using social media data to supplement current efforts in monitoring population-level medication nonadherence: detecting changes to medication treatment. Medication treatment changes, like changes to dosage or to frequency of intake, that are not overseen by...
Autores principales: | Weissenbacher, Davy, Ge, Suyu, Klein, Ari, O’Connor, Karen, Gross, Robert, Hennessy, Sean, Gonzalez-Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633624/ https://www.ncbi.nlm.nih.gov/pubmed/34613417 http://dx.doi.org/10.1093/jamia/ocab158 |
Ejemplares similares
-
Deep neural networks ensemble for detecting medication mentions in tweets
por: Weissenbacher, Davy, et al.
Publicado: (2019) -
Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
por: Nikfarjam, Azadeh, et al.
Publicado: (2015) -
Patient-Reported Reasons for Switching or Discontinuing Statin Therapy: A Mixed Methods Study Using Social Media
por: Golder, Su, et al.
Publicado: (2022) -
DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter
por: Magge, Arjun, et al.
Publicado: (2021) -
Deep neural networks and distant supervision for geographic location mention extraction
por: Magge, Arjun, et al.
Publicado: (2018)