Cargando…

Neural guidance factors as hubs of immunometabolic cross-talk

Semaphorins were originally identified as axon-guidance molecules essential for neural development. In addition to their functions in the neural system, members of the semaphorin family have critical functions in many pathophysiological processes, including immune responses, bone homeostasis, cancer...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakanishi, Yoshimitsu, Kang, Sujin, Kumanogoh, Atsushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633672/
https://www.ncbi.nlm.nih.gov/pubmed/34174067
http://dx.doi.org/10.1093/intimm/dxab035
Descripción
Sumario:Semaphorins were originally identified as axon-guidance molecules essential for neural development. In addition to their functions in the neural system, members of the semaphorin family have critical functions in many pathophysiological processes, including immune responses, bone homeostasis, cancer and metabolic disorders. In particular, several lines of evidence indicate that mammalian/mechanistic target of rapamycin (mTOR), a central regulator of cell metabolism, regulates the functions of semaphorins in various types of cells, revealing a novel link between semaphorins and cell metabolism. In this review, we discuss recent advances in the immunometabolic functions of semaphorins, with a particular focus on mTOR signaling.