Cargando…
Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures
We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on various GPU architectures. We have used them during the development and evaluation of a search method for tuning space proposed in [1]. With o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633859/ https://www.ncbi.nlm.nih.gov/pubmed/34877392 http://dx.doi.org/10.1016/j.dib.2021.107631 |
_version_ | 1784608013584171008 |
---|---|
author | Hozzová, Jana Filipovič, Jiří Nezarat, Amin Ol’ha, Jaroslav Petrovič, Filip |
author_facet | Hozzová, Jana Filipovič, Jiří Nezarat, Amin Ol’ha, Jaroslav Petrovič, Filip |
author_sort | Hozzová, Jana |
collection | PubMed |
description | We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on various GPU architectures. We have used them during the development and evaluation of a search method for tuning space proposed in [1]. With our framework Kernel Tuning Toolkit, freely available at Github, we measured computation times and hardware performance counters on several GPUs for the complete tuning spaces of five benchmarks. These data, which we provide here, might benefit research of search algorithms for the tuning spaces of GPU codes or research of relation between applied code optimization, hardware performance counters, and GPU kernels’ performance. Moreover, we describe the scripts we used for robust evaluation of our searcher and comparison to others in detail. In particular, the script that simulates the tuning, i.e., replaces time-demanding compiling and executing the tuned kernels with a quick reading of the computation time from our measured data, makes it possible to inspect the convergence of tuning search over a large number of experiments. These scripts, freely available with our other codes, make it easier to experiment with search algorithms and compare them in a robust and reproducible way. During our research, we generated models for predicting values of performance counters from values of tuning parameters of our benchmarks. Here, we provide the models themselves and describe the scripts we implemented for their training. These data might benefit researchers who want to reproduce or build on our research. |
format | Online Article Text |
id | pubmed-8633859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-86338592021-12-06 Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures Hozzová, Jana Filipovič, Jiří Nezarat, Amin Ol’ha, Jaroslav Petrovič, Filip Data Brief Data Article We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on various GPU architectures. We have used them during the development and evaluation of a search method for tuning space proposed in [1]. With our framework Kernel Tuning Toolkit, freely available at Github, we measured computation times and hardware performance counters on several GPUs for the complete tuning spaces of five benchmarks. These data, which we provide here, might benefit research of search algorithms for the tuning spaces of GPU codes or research of relation between applied code optimization, hardware performance counters, and GPU kernels’ performance. Moreover, we describe the scripts we used for robust evaluation of our searcher and comparison to others in detail. In particular, the script that simulates the tuning, i.e., replaces time-demanding compiling and executing the tuned kernels with a quick reading of the computation time from our measured data, makes it possible to inspect the convergence of tuning search over a large number of experiments. These scripts, freely available with our other codes, make it easier to experiment with search algorithms and compare them in a robust and reproducible way. During our research, we generated models for predicting values of performance counters from values of tuning parameters of our benchmarks. Here, we provide the models themselves and describe the scripts we implemented for their training. These data might benefit researchers who want to reproduce or build on our research. Elsevier 2021-11-24 /pmc/articles/PMC8633859/ /pubmed/34877392 http://dx.doi.org/10.1016/j.dib.2021.107631 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Data Article Hozzová, Jana Filipovič, Jiří Nezarat, Amin Ol’ha, Jaroslav Petrovič, Filip Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures |
title | Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures |
title_full | Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures |
title_fullStr | Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures |
title_full_unstemmed | Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures |
title_short | Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures |
title_sort | searching cuda code autotuning spaces with hardware performance counters: data from benchmarks running on various gpu architectures |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633859/ https://www.ncbi.nlm.nih.gov/pubmed/34877392 http://dx.doi.org/10.1016/j.dib.2021.107631 |
work_keys_str_mv | AT hozzovajana searchingcudacodeautotuningspaceswithhardwareperformancecountersdatafrombenchmarksrunningonvariousgpuarchitectures AT filipovicjiri searchingcudacodeautotuningspaceswithhardwareperformancecountersdatafrombenchmarksrunningonvariousgpuarchitectures AT nezaratamin searchingcudacodeautotuningspaceswithhardwareperformancecountersdatafrombenchmarksrunningonvariousgpuarchitectures AT olhajaroslav searchingcudacodeautotuningspaceswithhardwareperformancecountersdatafrombenchmarksrunningonvariousgpuarchitectures AT petrovicfilip searchingcudacodeautotuningspaceswithhardwareperformancecountersdatafrombenchmarksrunningonvariousgpuarchitectures |