Cargando…
Identifying essential genes across eukaryotes by machine learning
Identifying essential genes on a genome scale is resource intensive and has been performed for only a few eukaryotes. For less studied organisms essentiality might be predicted by gene homology. However, this approach cannot be applied to non-conserved genes. Additionally, divergent essentiality inf...
Autores principales: | Beder, Thomas, Aromolaran, Olufemi, Dönitz, Jürgen, Tapanelli, Sofia, Adedeji, Eunice O, Adebiyi, Ezekiel, Bucher, Gregor, Koenig, Rainer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634067/ https://www.ncbi.nlm.nih.gov/pubmed/34859210 http://dx.doi.org/10.1093/nargab/lqab110 |
Ejemplares similares
-
Predicting host dependency factors of pathogens in Drosophila melanogaster using machine learning
por: Aromolaran, Olufemi, et al.
Publicado: (2021) -
Essential gene prediction in Drosophila melanogaster using machine learning approaches based on sequence and functional features
por: Aromolaran, Olufemi, et al.
Publicado: (2020) -
Heuristic-enabled active machine learning: A case study of predicting essential developmental stage and immune response genes in Drosophila melanogaster
por: Aromolaran, Olufemi Tony, et al.
Publicado: (2023) -
Anopheles metabolic proteins in malaria transmission, prevention and control: a review
por: Adedeji, Eunice Oluwatobiloba, et al.
Publicado: (2020) -
Anopheles gambiae Trehalase Inhibitors for Malaria Vector Control: A Molecular Docking and Molecular Dynamics Study
por: Adedeji, Eunice O., et al.
Publicado: (2022)