Cargando…

Segregating Complete Tf2 Elements Are Largely Neutral in Fission Yeast

Transposable elements (TEs) comprise a large proportion of the eukaryote genomes. Yet it remains poorly understood how TEs influence the fitness of the hosts carrying them. Here, we empirically test the impact of TEs on the host fitness in the fission yeast Schizosaccharomyces pombe. We find that tw...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yan, Wang, Qin, Wu, Zhiwei, Han, Guan-Zhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634392/
https://www.ncbi.nlm.nih.gov/pubmed/34791222
http://dx.doi.org/10.1093/gbe/evab254
Descripción
Sumario:Transposable elements (TEs) comprise a large proportion of the eukaryote genomes. Yet it remains poorly understood how TEs influence the fitness of the hosts carrying them. Here, we empirically test the impact of TEs on the host fitness in the fission yeast Schizosaccharomyces pombe. We find that two families of TEs (Tf1 and Tf2 elements), both of which belong to long terminal repeat retrotransposons, are highly polymorphic among individual S. pombe strains. Only 13 complete Tf2 elements are identified in S. pombe laboratory strain 972. These 13 Tf2 elements integrated into host genomes in very recent time and are segregating within the S. pombe population. Through knocking out each of the 13 Tf2 elements in S. pombe strain 972, we find Tf2 knockout does not affect the host fitness, and Tf2 elements do not alter the expression of nearby genes. Challenged by diverse forms of stress, the Tf2 knockout strains do not exhibit different growth rates from wild-type strain. Together, we conclude that segregating complete Tf2 elements insertions are largely neutral to host fitness in the fission yeast. Our study provides genome-wide empirical support for the selfish nature of TEs in fission yeast.