Cargando…

Bending the Curve: Molecular Manifestations of Electron Antisymmetry

As very light fermions, electrons are governed by antisymmetric wave functions that lead to exchange integrals in the evaluation of the energy. Here we use the localized representation of orbitals to decompose the electronic energy in a fashion that isolates the enigmatic exchange contributions and...

Descripción completa

Detalles Bibliográficos
Autores principales: Herzfeld, Judith, Song, Xinrui, Li, Jicun, Li, Pinyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634764/
https://www.ncbi.nlm.nih.gov/pubmed/34851046
http://dx.doi.org/10.1002/open.202100234
Descripción
Sumario:As very light fermions, electrons are governed by antisymmetric wave functions that lead to exchange integrals in the evaluation of the energy. Here we use the localized representation of orbitals to decompose the electronic energy in a fashion that isolates the enigmatic exchange contributions and characterizes their distinctive control over electron distributions. The key to this completely general analysis is considering the electrons in groups of three, drawing attention to the curvatures of pair potentials, rather than just their amplitudes and slopes. We show that a positive curvature at short distances is essential for the mutual distancing of electrons and a negative curvature at longer distances is essential to account for the influence of lone pairs on bond torsion. Neither curvature is available in the absence of the exchange contributions. Thus, although exchange energies are much shorter range than Coulomb energies, their influence on molecular geometry is profound and readily understood.