Cargando…
Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers
Mobile measures of human circadian rhythms (CR) are needed in the age of chronotherapy. Two wearable measures of CR have recently been validated: one that uses heart rate to extract circadian rhythms that originate in the sinoatrial node of the heart, and another that uses activity to predict the la...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634937/ https://www.ncbi.nlm.nih.gov/pubmed/34870267 http://dx.doi.org/10.3389/fdgth.2021.727504 |
_version_ | 1784608209425661952 |
---|---|
author | Huang, Yitong Mayer, Caleb Walch, Olivia J. Bowman, Clark Sen, Srijan Goldstein, Cathy Tyler, Jonathan Forger, Daniel B. |
author_facet | Huang, Yitong Mayer, Caleb Walch, Olivia J. Bowman, Clark Sen, Srijan Goldstein, Cathy Tyler, Jonathan Forger, Daniel B. |
author_sort | Huang, Yitong |
collection | PubMed |
description | Mobile measures of human circadian rhythms (CR) are needed in the age of chronotherapy. Two wearable measures of CR have recently been validated: one that uses heart rate to extract circadian rhythms that originate in the sinoatrial node of the heart, and another that uses activity to predict the laboratory gold standard and central circadian pacemaker marker, dim light melatonin onset (DLMO). We first find that the heart rate markers of normal real-world individuals align with laboratory DLMO measurements when we account for heart rate phase error. Next, we expand upon previous work that has examined sleep patterns or chronotypes during the COVID-19 lockdown by studying the effects of social distancing on circadian rhythms. In particular, using data collected from the Social Rhythms app, a mobile application where individuals upload their wearable data and receive reports on their circadian rhythms, we compared the two circadian phase estimates before and after social distancing. Interestingly, we found that the lockdown had different effects on the two ambulatory measurements. Before the lockdown, the two measures aligned, as predicted by laboratory data. After the lockdown, when circadian timekeeping signals were blunted, these measures diverged in 70% of subjects (with circadian rhythms in heart rate, or CRHR, becoming delayed). Thus, while either approach can measure circadian rhythms, both are needed to understand internal desynchrony. We also argue that interventions may be needed in future lockdowns to better align separate circadian rhythms in the body. |
format | Online Article Text |
id | pubmed-8634937 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86349372021-12-02 Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers Huang, Yitong Mayer, Caleb Walch, Olivia J. Bowman, Clark Sen, Srijan Goldstein, Cathy Tyler, Jonathan Forger, Daniel B. Front Digit Health Digital Health Mobile measures of human circadian rhythms (CR) are needed in the age of chronotherapy. Two wearable measures of CR have recently been validated: one that uses heart rate to extract circadian rhythms that originate in the sinoatrial node of the heart, and another that uses activity to predict the laboratory gold standard and central circadian pacemaker marker, dim light melatonin onset (DLMO). We first find that the heart rate markers of normal real-world individuals align with laboratory DLMO measurements when we account for heart rate phase error. Next, we expand upon previous work that has examined sleep patterns or chronotypes during the COVID-19 lockdown by studying the effects of social distancing on circadian rhythms. In particular, using data collected from the Social Rhythms app, a mobile application where individuals upload their wearable data and receive reports on their circadian rhythms, we compared the two circadian phase estimates before and after social distancing. Interestingly, we found that the lockdown had different effects on the two ambulatory measurements. Before the lockdown, the two measures aligned, as predicted by laboratory data. After the lockdown, when circadian timekeeping signals were blunted, these measures diverged in 70% of subjects (with circadian rhythms in heart rate, or CRHR, becoming delayed). Thus, while either approach can measure circadian rhythms, both are needed to understand internal desynchrony. We also argue that interventions may be needed in future lockdowns to better align separate circadian rhythms in the body. Frontiers Media S.A. 2021-11-16 /pmc/articles/PMC8634937/ /pubmed/34870267 http://dx.doi.org/10.3389/fdgth.2021.727504 Text en Copyright © 2021 Huang, Mayer, Walch, Bowman, Sen, Goldstein, Tyler and Forger. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Digital Health Huang, Yitong Mayer, Caleb Walch, Olivia J. Bowman, Clark Sen, Srijan Goldstein, Cathy Tyler, Jonathan Forger, Daniel B. Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers |
title | Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers |
title_full | Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers |
title_fullStr | Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers |
title_full_unstemmed | Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers |
title_short | Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers |
title_sort | distinct circadian assessments from wearable data reveal social distancing promoted internal desynchrony between circadian markers |
topic | Digital Health |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634937/ https://www.ncbi.nlm.nih.gov/pubmed/34870267 http://dx.doi.org/10.3389/fdgth.2021.727504 |
work_keys_str_mv | AT huangyitong distinctcircadianassessmentsfromwearabledatarevealsocialdistancingpromotedinternaldesynchronybetweencircadianmarkers AT mayercaleb distinctcircadianassessmentsfromwearabledatarevealsocialdistancingpromotedinternaldesynchronybetweencircadianmarkers AT walcholiviaj distinctcircadianassessmentsfromwearabledatarevealsocialdistancingpromotedinternaldesynchronybetweencircadianmarkers AT bowmanclark distinctcircadianassessmentsfromwearabledatarevealsocialdistancingpromotedinternaldesynchronybetweencircadianmarkers AT sensrijan distinctcircadianassessmentsfromwearabledatarevealsocialdistancingpromotedinternaldesynchronybetweencircadianmarkers AT goldsteincathy distinctcircadianassessmentsfromwearabledatarevealsocialdistancingpromotedinternaldesynchronybetweencircadianmarkers AT tylerjonathan distinctcircadianassessmentsfromwearabledatarevealsocialdistancingpromotedinternaldesynchronybetweencircadianmarkers AT forgerdanielb distinctcircadianassessmentsfromwearabledatarevealsocialdistancingpromotedinternaldesynchronybetweencircadianmarkers |