Cargando…
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
Most existing electrocardiogram (ECG) feature extraction methods rely on rule-based approaches. It is difficult to manually define all ECG features. We propose an unsupervised feature learning method using a convolutional variational autoencoder (CVAE) that can extract ECG features with unlabeled da...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635334/ https://www.ncbi.nlm.nih.gov/pubmed/34852002 http://dx.doi.org/10.1371/journal.pone.0260612 |