Cargando…
Improved performance and consistency of deep learning 3D liver segmentation with heterogeneous cancer stages in magnetic resonance imaging
PURPOSE: Accurate liver segmentation is key for volumetry assessment to guide treatment decisions. Moreover, it is an important pre-processing step for cancer detection algorithms. Liver segmentation can be especially challenging in patients with cancer-related tissue changes and shape deformation....
Autores principales: | Gross, Moritz, Spektor, Michael, Jaffe, Ariel, Kucukkaya, Ahmet S., Iseke, Simon, Haider, Stefan P., Strazzabosco, Mario, Chapiro, Julius, Onofrey, John A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635384/ https://www.ncbi.nlm.nih.gov/pubmed/34852007 http://dx.doi.org/10.1371/journal.pone.0260630 |
Ejemplares similares
-
LiverHccSeg: A publicly available multiphasic MRI dataset with liver and HCC tumor segmentations and inter-rater agreement analysis
por: Gross, Moritz, et al.
Publicado: (2023) -
Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
por: Kucukkaya, Ahmet Said, et al.
Publicado: (2023) -
Adherence to Tumor Board Recommendations in the Treatment of Patients with Hepatocellular Carcinoma
por: Cao, Yueming, et al.
Publicado: (2023) -
Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation
por: Roy, Snehashis, et al.
Publicado: (2016) -
Diabetes medications and risk of HCC
por: Plaz Torres, Maria Corina, et al.
Publicado: (2022)