Cargando…
Development of prediction models of spontaneous ureteral stone passage through machine learning: Comparison with conventional statistical analysis
OBJECTIVES: To develop a prediction model of spontaneous ureteral stone passage (SSP) using machine learning and logistic regression and compare the performance of the two models. Indications for management of ureteral stones are unclear, and the clinician determines whether to wait for SSP or perfo...
Autores principales: | Park, Jee Soo, Kim, Dong Wook, Lee, Dongu, Lee, Taeju, Koo, Kyo Chul, Han, Woong Kyu, Chung, Byung Ha, Lee, Kwang Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635399/ https://www.ncbi.nlm.nih.gov/pubmed/34851999 http://dx.doi.org/10.1371/journal.pone.0260517 |
Ejemplares similares
-
Significance of Neutrophil-to-Lymphocyte Ratio as a Novel Indicator of Spontaneous Ureter Stone Passage
por: Lee, Kwang Suk, et al.
Publicado: (2017) -
The effect of smoking on spontaneous passage of distal ureteral stones
por: Fazlioglu, Adem, et al.
Publicado: (2014) -
Factors that predict the spontaneous passage of ureteric stones in children
por: Mokhless, Ibrahim, et al.
Publicado: (2012) -
Time Course Resolution of Hydronephrosis with Spontaneous Ureteral Stone Passage
por: Perry, Kenneth J., et al.
Publicado: (2010) -
Can serum procalcitonin levels be useful in predicting spontaneous ureteral stone passage?
por: Cilesiz, Nusret Can, et al.
Publicado: (2020)