Cargando…
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
The classification of electroencephalogram (EEG) signals is of significant importance in brain-computer interface (BCI) systems. Aiming to achieve intelligent classification of motor imagery EEG types with high accuracy, a classification methodology using the wavelet packet decomposition (WPD) and t...
Autores principales: | Huang, Jing-Shan, Liu, Wan-Shan, Yao, Bin, Wang, Zhan-Xiang, Chen, Si-Fang, Sun, Wei-Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635693/ https://www.ncbi.nlm.nih.gov/pubmed/34867174 http://dx.doi.org/10.3389/fnins.2021.774857 |
Ejemplares similares
-
A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
Motor Imagery EEG Signal Recognition Using Deep Convolution Neural Network
por: Xiao, Xiongliang, et al.
Publicado: (2021) -
Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning
por: Feng, Jin, et al.
Publicado: (2022) -
Feature optimization based on improved novel global harmony search algorithm for motor imagery electroencephalogram classification
por: Shi, Bin, et al.
Publicado: (2022) -
Motor imagery electroencephalogram classification algorithm based on joint features in the spatial and frequency domains and instance transfer
por: Wang, Ximiao, et al.
Publicado: (2023)