Cargando…
Deep-Learning-Based Natural Language Processing of Serial Free-Text Radiological Reports for Predicting Rectal Cancer Patient Survival
Most electronic medical records, such as free-text radiological reports, are unstructured; however, the methodological approaches to analyzing these accumulating unstructured records are limited. This article proposes a deep-transfer-learning-based natural language processing model that analyzes ser...
Autores principales: | Kim, Sunkyu, Lee, Choong-kun, Choi, Yonghwa, Baek, Eun Sil, Choi, Jeong Eun, Lim, Joon Seok, Kang, Jaewoo, Shin, Sang Joon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635726/ https://www.ncbi.nlm.nih.gov/pubmed/34868947 http://dx.doi.org/10.3389/fonc.2021.747250 |
Ejemplares similares
-
Deep learning of mutation-gene-drug relations from the literature
por: Lee, Kyubum, et al.
Publicado: (2018) -
A Pilot Study of Biomedical Text Comprehension using an Attention-Based Deep Neural Reader: Design and Experimental Analysis
por: Kim, Seongsoon, et al.
Publicado: (2018) -
BioBERT: a pre-trained biomedical language representation model for biomedical text mining
por: Lee, Jinhyuk, et al.
Publicado: (2020) -
BERN2: an advanced neural biomedical named entity recognition and normalization tool
por: Sung, Mujeen, et al.
Publicado: (2022) -
Association of neutrophil-to-lymphocyte ratio, radiotherapy fractionation/technique, and risk of development of distant metastasis among patients with locally advanced rectal cancer
por: Yang, Gowoon, et al.
Publicado: (2022)