Cargando…

Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach

Despite the wide application of the magnetic resonance imaging (MRI) technique, there are no widely used standards on naming and describing MRI sequences. The absence of consistent naming conventions presents a major challenge in automating image processing since most MRI software require a priori k...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Shuai, Beaton, Derek, Arnott, Stephen R., Gee, Tom, Zamyadi, Mojdeh, Bartha, Robert, Symons, Sean, MacQueen, Glenda M., Hassel, Stefanie, Lerch, Jason P., Anagnostou, Evdokia, Lam, Raymond W., Frey, Benicio N., Milev, Roumen, Müller, Daniel J., Kennedy, Sidney H., Scott, Christopher J. M., Strother, Stephen C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635782/
https://www.ncbi.nlm.nih.gov/pubmed/34867254
http://dx.doi.org/10.3389/fninf.2021.622951
_version_ 1784608399390932992
author Liang, Shuai
Beaton, Derek
Arnott, Stephen R.
Gee, Tom
Zamyadi, Mojdeh
Bartha, Robert
Symons, Sean
MacQueen, Glenda M.
Hassel, Stefanie
Lerch, Jason P.
Anagnostou, Evdokia
Lam, Raymond W.
Frey, Benicio N.
Milev, Roumen
Müller, Daniel J.
Kennedy, Sidney H.
Scott, Christopher J. M.
Strother, Stephen C.
author_facet Liang, Shuai
Beaton, Derek
Arnott, Stephen R.
Gee, Tom
Zamyadi, Mojdeh
Bartha, Robert
Symons, Sean
MacQueen, Glenda M.
Hassel, Stefanie
Lerch, Jason P.
Anagnostou, Evdokia
Lam, Raymond W.
Frey, Benicio N.
Milev, Roumen
Müller, Daniel J.
Kennedy, Sidney H.
Scott, Christopher J. M.
Strother, Stephen C.
author_sort Liang, Shuai
collection PubMed
description Despite the wide application of the magnetic resonance imaging (MRI) technique, there are no widely used standards on naming and describing MRI sequences. The absence of consistent naming conventions presents a major challenge in automating image processing since most MRI software require a priori knowledge of the type of the MRI sequences to be processed. This issue becomes increasingly critical with the current efforts toward open-sharing of MRI data in the neuroscience community. This manuscript reports an MRI sequence detection method using imaging metadata and a supervised machine learning technique. Three datasets from the Brain Center for Ontario Data Exploration (Brain-CODE) data platform, each involving MRI data from multiple research institutes, are used to build and test our model. The preliminary results show that a random forest model can be trained to accurately identify MRI sequence types, and to recognize MRI scans that do not belong to any of the known sequence types. Therefore the proposed approach can be used to automate processing of MRI data that involves a large number of variations in sequence names, and to help standardize sequence naming in ongoing data collections. This study highlights the potential of the machine learning approaches in helping manage health data.
format Online
Article
Text
id pubmed-8635782
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-86357822021-12-02 Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach Liang, Shuai Beaton, Derek Arnott, Stephen R. Gee, Tom Zamyadi, Mojdeh Bartha, Robert Symons, Sean MacQueen, Glenda M. Hassel, Stefanie Lerch, Jason P. Anagnostou, Evdokia Lam, Raymond W. Frey, Benicio N. Milev, Roumen Müller, Daniel J. Kennedy, Sidney H. Scott, Christopher J. M. Strother, Stephen C. Front Neuroinform Neuroscience Despite the wide application of the magnetic resonance imaging (MRI) technique, there are no widely used standards on naming and describing MRI sequences. The absence of consistent naming conventions presents a major challenge in automating image processing since most MRI software require a priori knowledge of the type of the MRI sequences to be processed. This issue becomes increasingly critical with the current efforts toward open-sharing of MRI data in the neuroscience community. This manuscript reports an MRI sequence detection method using imaging metadata and a supervised machine learning technique. Three datasets from the Brain Center for Ontario Data Exploration (Brain-CODE) data platform, each involving MRI data from multiple research institutes, are used to build and test our model. The preliminary results show that a random forest model can be trained to accurately identify MRI sequence types, and to recognize MRI scans that do not belong to any of the known sequence types. Therefore the proposed approach can be used to automate processing of MRI data that involves a large number of variations in sequence names, and to help standardize sequence naming in ongoing data collections. This study highlights the potential of the machine learning approaches in helping manage health data. Frontiers Media S.A. 2021-11-17 /pmc/articles/PMC8635782/ /pubmed/34867254 http://dx.doi.org/10.3389/fninf.2021.622951 Text en Copyright © 2021 Liang, Beaton, Arnott, Gee, Zamyadi, Bartha, Symons, MacQueen, Hassel, Lerch, Anagnostou, Lam, Frey, Milev, Müller, Kennedy, Scott, The ONDRI Investigators and Strother. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Liang, Shuai
Beaton, Derek
Arnott, Stephen R.
Gee, Tom
Zamyadi, Mojdeh
Bartha, Robert
Symons, Sean
MacQueen, Glenda M.
Hassel, Stefanie
Lerch, Jason P.
Anagnostou, Evdokia
Lam, Raymond W.
Frey, Benicio N.
Milev, Roumen
Müller, Daniel J.
Kennedy, Sidney H.
Scott, Christopher J. M.
Strother, Stephen C.
Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title_full Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title_fullStr Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title_full_unstemmed Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title_short Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title_sort magnetic resonance imaging sequence identification using a metadata learning approach
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635782/
https://www.ncbi.nlm.nih.gov/pubmed/34867254
http://dx.doi.org/10.3389/fninf.2021.622951
work_keys_str_mv AT liangshuai magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT beatonderek magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT arnottstephenr magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT geetom magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT zamyadimojdeh magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT bartharobert magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT symonssean magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT macqueenglendam magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT hasselstefanie magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT lerchjasonp magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT anagnostouevdokia magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT lamraymondw magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT freybenicion magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT milevroumen magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT mullerdanielj magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT kennedysidneyh magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT scottchristopherjm magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT strotherstephenc magneticresonanceimagingsequenceidentificationusingametadatalearningapproach