Cargando…

Acute Response of Sclerostin to Whole-body Vibration with Blood Flow Restriction

Blood flow restriction may augment the skeletal response to whole-body vibration. This study used a randomised, crossover design to investigate the acute response of serum sclerostin and bone turnover biomarkers to whole-body vibration with blood flow restriction. Ten healthy males (mean±standard de...

Descripción completa

Detalles Bibliográficos
Autores principales: Gapper, Kyle S, Stevens, Sally, Antoni, Rona, Hunt, Julie, Allison, Sarah J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Georg Thieme Verlag KG 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635793/
https://www.ncbi.nlm.nih.gov/pubmed/33975366
http://dx.doi.org/10.1055/a-1422-3376
Descripción
Sumario:Blood flow restriction may augment the skeletal response to whole-body vibration. This study used a randomised, crossover design to investigate the acute response of serum sclerostin and bone turnover biomarkers to whole-body vibration with blood flow restriction. Ten healthy males (mean±standard deviation; age: 27±8 years) completed two experimental conditions separated by 7 days: (i) whole-body vibration (10 1-minute bouts of whole-body vibration with 30 s recovery) or (ii) whole-body vibration with lower-body blood flow restriction (10 cycles of 110 mmHg inflation with 30 s deflation during recovery). Fasting blood samples were obtained immediately before and immediately after exercise, then 1 hour, and 24 hours after exercise. Serum samples were analysed for sclerostin, cross-linked C-terminal telopeptide of type I collagen, and bone-specific alkaline phosphatase. There was a significant time × condition interaction for bone-specific alkaline phosphatase (p=0.003); bone-specific alkaline phosphatase values at 24 hours post-exercise were significantly higher following whole-body vibration compared to combined whole-body vibration and blood flow restriction (p=0.028). No significant time × condition interaction occurred for any other outcome measure (p>0.05). These findings suggest that a single session of whole-body vibration combined with blood flow restriction does not significantly affect serum sclerostin or bone turnover biomarkers.