Cargando…
Supervised Learning Algorithm for Multilayer Spiking Neural Networks with Long-Term Memory Spike Response Model
As a new brain-inspired computational model of artificial neural networks, spiking neural networks transmit and process information via precisely timed spike trains. Constructing efficient learning methods is a significant research field in spiking neural networks. In this paper, we present a superv...
Autores principales: | Lin, Xianghong, Zhang, Mengwei, Wang, Xiangwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635912/ https://www.ncbi.nlm.nih.gov/pubmed/34868299 http://dx.doi.org/10.1155/2021/8592824 |
Ejemplares similares
-
SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks
por: Zenke, Friedemann, et al.
Publicado: (2018) -
Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks
por: Gardner, Brian, et al.
Publicado: (2021) -
An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks
por: Xie, Xiurui, et al.
Publicado: (2016) -
Supervised Learning Algorithm Based on Spike Train Inner Product for Deep Spiking Neural Networks
por: Lin, Xianghong, et al.
Publicado: (2023) -
A Delay Learning Algorithm Based on Spike Train Kernels for Spiking Neurons
por: Wang, Xiangwen, et al.
Publicado: (2019)