Cargando…
Remaining Useful Life Estimation of Aircraft Engines Using a Joint Deep Learning Model Based on TCNN and Transformer
The remaining useful life estimation is a key technology in prognostics and health management (PHM) systems for a new generation of aircraft engines. With the increase in massive monitoring data, it brings new opportunities to improve the prediction from the perspective of deep learning. Therefore,...
Autores principales: | Wang, Hai-Kun, Cheng, Yi, Song, Ke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635935/ https://www.ncbi.nlm.nih.gov/pubmed/34868292 http://dx.doi.org/10.1155/2021/5185938 |
Ejemplares similares
-
An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism
por: Li, Hao, et al.
Publicado: (2022) -
A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines
por: Lasheras, Fernando Sánchez, et al.
Publicado: (2015) -
Deep learning-based anomaly-onset aware remaining useful life estimation of bearings
por: Kamat, Pooja Vinayak, et al.
Publicado: (2021) -
Deep Learning-Based Remaining Useful Life Estimation of Bearings with Time-Frequency Information
por: Liu, Bingguo, et al.
Publicado: (2022) -
Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion
por: Peng, Cheng, et al.
Publicado: (2022)