Cargando…
Tracking the movement of discrete gating charges in a voltage-gated potassium channel
Positively charged amino acids respond to membrane potential changes to drive voltage sensor movement in voltage-gated ion channels, but determining the displacements of voltage sensor gating charges has proven difficult. We optically tracked the movement of the two most extracellular charged residu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635975/ https://www.ncbi.nlm.nih.gov/pubmed/34779404 http://dx.doi.org/10.7554/eLife.58148 |
_version_ | 1784608436815659008 |
---|---|
author | Priest, Michael F Lee, Elizabeth EL Bezanilla, Francisco |
author_facet | Priest, Michael F Lee, Elizabeth EL Bezanilla, Francisco |
author_sort | Priest, Michael F |
collection | PubMed |
description | Positively charged amino acids respond to membrane potential changes to drive voltage sensor movement in voltage-gated ion channels, but determining the displacements of voltage sensor gating charges has proven difficult. We optically tracked the movement of the two most extracellular charged residues (R1 and R2) in the Shaker potassium channel voltage sensor using a fluorescent positively charged bimane derivative (qBBr) that is strongly quenched by tryptophan. By individually mutating residues to tryptophan within the putative pathway of gating charges, we observed that the charge motion during activation is a rotation and a tilted translation that differs between R1 and R2. Tryptophan-induced quenching of qBBr also indicates that a crucial residue of the hydrophobic plug is linked to the Cole–Moore shift through its interaction with R1. Finally, we show that this approach extends to additional voltage-sensing membrane proteins using the Ciona intestinalis voltage-sensitive phosphatase (CiVSP). |
format | Online Article Text |
id | pubmed-8635975 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-86359752021-12-03 Tracking the movement of discrete gating charges in a voltage-gated potassium channel Priest, Michael F Lee, Elizabeth EL Bezanilla, Francisco eLife Structural Biology and Molecular Biophysics Positively charged amino acids respond to membrane potential changes to drive voltage sensor movement in voltage-gated ion channels, but determining the displacements of voltage sensor gating charges has proven difficult. We optically tracked the movement of the two most extracellular charged residues (R1 and R2) in the Shaker potassium channel voltage sensor using a fluorescent positively charged bimane derivative (qBBr) that is strongly quenched by tryptophan. By individually mutating residues to tryptophan within the putative pathway of gating charges, we observed that the charge motion during activation is a rotation and a tilted translation that differs between R1 and R2. Tryptophan-induced quenching of qBBr also indicates that a crucial residue of the hydrophobic plug is linked to the Cole–Moore shift through its interaction with R1. Finally, we show that this approach extends to additional voltage-sensing membrane proteins using the Ciona intestinalis voltage-sensitive phosphatase (CiVSP). eLife Sciences Publications, Ltd 2021-11-15 /pmc/articles/PMC8635975/ /pubmed/34779404 http://dx.doi.org/10.7554/eLife.58148 Text en © 2021, Priest et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Structural Biology and Molecular Biophysics Priest, Michael F Lee, Elizabeth EL Bezanilla, Francisco Tracking the movement of discrete gating charges in a voltage-gated potassium channel |
title | Tracking the movement of discrete gating charges in a voltage-gated potassium channel |
title_full | Tracking the movement of discrete gating charges in a voltage-gated potassium channel |
title_fullStr | Tracking the movement of discrete gating charges in a voltage-gated potassium channel |
title_full_unstemmed | Tracking the movement of discrete gating charges in a voltage-gated potassium channel |
title_short | Tracking the movement of discrete gating charges in a voltage-gated potassium channel |
title_sort | tracking the movement of discrete gating charges in a voltage-gated potassium channel |
topic | Structural Biology and Molecular Biophysics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635975/ https://www.ncbi.nlm.nih.gov/pubmed/34779404 http://dx.doi.org/10.7554/eLife.58148 |
work_keys_str_mv | AT priestmichaelf trackingthemovementofdiscretegatingchargesinavoltagegatedpotassiumchannel AT leeelizabethel trackingthemovementofdiscretegatingchargesinavoltagegatedpotassiumchannel AT bezanillafrancisco trackingthemovementofdiscretegatingchargesinavoltagegatedpotassiumchannel |