Cargando…
Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning
Hematopoietic stem cell gene therapy is emerging as a promising therapeutic strategy for many diseases of the blood and immune system. However, several individuals who underwent gene therapy in different trials developed hematological malignancies caused by insertional mutagenesis. Preclinical asses...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636173/ https://www.ncbi.nlm.nih.gov/pubmed/34174440 http://dx.doi.org/10.1016/j.ymthe.2021.06.017 |
_version_ | 1784608480512966656 |
---|---|
author | Schwarzer, Adrian Talbot, Steven R. Selich, Anton Morgan, Michael Schott, Juliane W. Dittrich-Breiholz, Oliver Bastone, Antonella L. Weigel, Bettina Ha, Teng Cheong Dziadek, Violetta Gijsbers, Rik Thrasher, Adrian J. Staal, Frank J.T. Gaspar, Hubert B. Modlich, Ute Schambach, Axel Rothe, Michael |
author_facet | Schwarzer, Adrian Talbot, Steven R. Selich, Anton Morgan, Michael Schott, Juliane W. Dittrich-Breiholz, Oliver Bastone, Antonella L. Weigel, Bettina Ha, Teng Cheong Dziadek, Violetta Gijsbers, Rik Thrasher, Adrian J. Staal, Frank J.T. Gaspar, Hubert B. Modlich, Ute Schambach, Axel Rothe, Michael |
author_sort | Schwarzer, Adrian |
collection | PubMed |
description | Hematopoietic stem cell gene therapy is emerging as a promising therapeutic strategy for many diseases of the blood and immune system. However, several individuals who underwent gene therapy in different trials developed hematological malignancies caused by insertional mutagenesis. Preclinical assessment of vector safety remains challenging because there are few reliable assays to screen for potential insertional mutagenesis effects in vitro. Here we demonstrate that genotoxic vectors induce a unique gene expression signature linked to stemness and oncogenesis in transduced murine hematopoietic stem and progenitor cells. Based on this finding, we developed the surrogate assay for genotoxicity assessment (SAGA). SAGA classifies integrating retroviral vectors using machine learning to detect this gene expression signature during the course of in vitro immortalization. On a set of benchmark vectors with known genotoxic potential, SAGA achieved an accuracy of 90.9%. SAGA is more robust and sensitive and faster than previous assays and reliably predicts a mutagenic risk for vectors that led to leukemic severe adverse events in clinical trials. Our work provides a fast and robust tool for preclinical risk assessment of gene therapy vectors, potentially paving the way for safer gene therapy trials. |
format | Online Article Text |
id | pubmed-8636173 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-86361732022-12-01 Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning Schwarzer, Adrian Talbot, Steven R. Selich, Anton Morgan, Michael Schott, Juliane W. Dittrich-Breiholz, Oliver Bastone, Antonella L. Weigel, Bettina Ha, Teng Cheong Dziadek, Violetta Gijsbers, Rik Thrasher, Adrian J. Staal, Frank J.T. Gaspar, Hubert B. Modlich, Ute Schambach, Axel Rothe, Michael Mol Ther Original Article Hematopoietic stem cell gene therapy is emerging as a promising therapeutic strategy for many diseases of the blood and immune system. However, several individuals who underwent gene therapy in different trials developed hematological malignancies caused by insertional mutagenesis. Preclinical assessment of vector safety remains challenging because there are few reliable assays to screen for potential insertional mutagenesis effects in vitro. Here we demonstrate that genotoxic vectors induce a unique gene expression signature linked to stemness and oncogenesis in transduced murine hematopoietic stem and progenitor cells. Based on this finding, we developed the surrogate assay for genotoxicity assessment (SAGA). SAGA classifies integrating retroviral vectors using machine learning to detect this gene expression signature during the course of in vitro immortalization. On a set of benchmark vectors with known genotoxic potential, SAGA achieved an accuracy of 90.9%. SAGA is more robust and sensitive and faster than previous assays and reliably predicts a mutagenic risk for vectors that led to leukemic severe adverse events in clinical trials. Our work provides a fast and robust tool for preclinical risk assessment of gene therapy vectors, potentially paving the way for safer gene therapy trials. American Society of Gene & Cell Therapy 2021-12-01 2021-06-24 /pmc/articles/PMC8636173/ /pubmed/34174440 http://dx.doi.org/10.1016/j.ymthe.2021.06.017 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Schwarzer, Adrian Talbot, Steven R. Selich, Anton Morgan, Michael Schott, Juliane W. Dittrich-Breiholz, Oliver Bastone, Antonella L. Weigel, Bettina Ha, Teng Cheong Dziadek, Violetta Gijsbers, Rik Thrasher, Adrian J. Staal, Frank J.T. Gaspar, Hubert B. Modlich, Ute Schambach, Axel Rothe, Michael Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning |
title | Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning |
title_full | Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning |
title_fullStr | Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning |
title_full_unstemmed | Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning |
title_short | Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning |
title_sort | predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636173/ https://www.ncbi.nlm.nih.gov/pubmed/34174440 http://dx.doi.org/10.1016/j.ymthe.2021.06.017 |
work_keys_str_mv | AT schwarzeradrian predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT talbotstevenr predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT selichanton predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT morganmichael predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT schottjulianew predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT dittrichbreiholzoliver predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT bastoneantonellal predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT weigelbettina predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT hatengcheong predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT dziadekvioletta predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT gijsbersrik predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT thrasheradrianj predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT staalfrankjt predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT gasparhubertb predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT modlichute predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT schambachaxel predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning AT rothemichael predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning |