Cargando…

Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning

Hematopoietic stem cell gene therapy is emerging as a promising therapeutic strategy for many diseases of the blood and immune system. However, several individuals who underwent gene therapy in different trials developed hematological malignancies caused by insertional mutagenesis. Preclinical asses...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwarzer, Adrian, Talbot, Steven R., Selich, Anton, Morgan, Michael, Schott, Juliane W., Dittrich-Breiholz, Oliver, Bastone, Antonella L., Weigel, Bettina, Ha, Teng Cheong, Dziadek, Violetta, Gijsbers, Rik, Thrasher, Adrian J., Staal, Frank J.T., Gaspar, Hubert B., Modlich, Ute, Schambach, Axel, Rothe, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636173/
https://www.ncbi.nlm.nih.gov/pubmed/34174440
http://dx.doi.org/10.1016/j.ymthe.2021.06.017
_version_ 1784608480512966656
author Schwarzer, Adrian
Talbot, Steven R.
Selich, Anton
Morgan, Michael
Schott, Juliane W.
Dittrich-Breiholz, Oliver
Bastone, Antonella L.
Weigel, Bettina
Ha, Teng Cheong
Dziadek, Violetta
Gijsbers, Rik
Thrasher, Adrian J.
Staal, Frank J.T.
Gaspar, Hubert B.
Modlich, Ute
Schambach, Axel
Rothe, Michael
author_facet Schwarzer, Adrian
Talbot, Steven R.
Selich, Anton
Morgan, Michael
Schott, Juliane W.
Dittrich-Breiholz, Oliver
Bastone, Antonella L.
Weigel, Bettina
Ha, Teng Cheong
Dziadek, Violetta
Gijsbers, Rik
Thrasher, Adrian J.
Staal, Frank J.T.
Gaspar, Hubert B.
Modlich, Ute
Schambach, Axel
Rothe, Michael
author_sort Schwarzer, Adrian
collection PubMed
description Hematopoietic stem cell gene therapy is emerging as a promising therapeutic strategy for many diseases of the blood and immune system. However, several individuals who underwent gene therapy in different trials developed hematological malignancies caused by insertional mutagenesis. Preclinical assessment of vector safety remains challenging because there are few reliable assays to screen for potential insertional mutagenesis effects in vitro. Here we demonstrate that genotoxic vectors induce a unique gene expression signature linked to stemness and oncogenesis in transduced murine hematopoietic stem and progenitor cells. Based on this finding, we developed the surrogate assay for genotoxicity assessment (SAGA). SAGA classifies integrating retroviral vectors using machine learning to detect this gene expression signature during the course of in vitro immortalization. On a set of benchmark vectors with known genotoxic potential, SAGA achieved an accuracy of 90.9%. SAGA is more robust and sensitive and faster than previous assays and reliably predicts a mutagenic risk for vectors that led to leukemic severe adverse events in clinical trials. Our work provides a fast and robust tool for preclinical risk assessment of gene therapy vectors, potentially paving the way for safer gene therapy trials.
format Online
Article
Text
id pubmed-8636173
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society of Gene & Cell Therapy
record_format MEDLINE/PubMed
spelling pubmed-86361732022-12-01 Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning Schwarzer, Adrian Talbot, Steven R. Selich, Anton Morgan, Michael Schott, Juliane W. Dittrich-Breiholz, Oliver Bastone, Antonella L. Weigel, Bettina Ha, Teng Cheong Dziadek, Violetta Gijsbers, Rik Thrasher, Adrian J. Staal, Frank J.T. Gaspar, Hubert B. Modlich, Ute Schambach, Axel Rothe, Michael Mol Ther Original Article Hematopoietic stem cell gene therapy is emerging as a promising therapeutic strategy for many diseases of the blood and immune system. However, several individuals who underwent gene therapy in different trials developed hematological malignancies caused by insertional mutagenesis. Preclinical assessment of vector safety remains challenging because there are few reliable assays to screen for potential insertional mutagenesis effects in vitro. Here we demonstrate that genotoxic vectors induce a unique gene expression signature linked to stemness and oncogenesis in transduced murine hematopoietic stem and progenitor cells. Based on this finding, we developed the surrogate assay for genotoxicity assessment (SAGA). SAGA classifies integrating retroviral vectors using machine learning to detect this gene expression signature during the course of in vitro immortalization. On a set of benchmark vectors with known genotoxic potential, SAGA achieved an accuracy of 90.9%. SAGA is more robust and sensitive and faster than previous assays and reliably predicts a mutagenic risk for vectors that led to leukemic severe adverse events in clinical trials. Our work provides a fast and robust tool for preclinical risk assessment of gene therapy vectors, potentially paving the way for safer gene therapy trials. American Society of Gene & Cell Therapy 2021-12-01 2021-06-24 /pmc/articles/PMC8636173/ /pubmed/34174440 http://dx.doi.org/10.1016/j.ymthe.2021.06.017 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Schwarzer, Adrian
Talbot, Steven R.
Selich, Anton
Morgan, Michael
Schott, Juliane W.
Dittrich-Breiholz, Oliver
Bastone, Antonella L.
Weigel, Bettina
Ha, Teng Cheong
Dziadek, Violetta
Gijsbers, Rik
Thrasher, Adrian J.
Staal, Frank J.T.
Gaspar, Hubert B.
Modlich, Ute
Schambach, Axel
Rothe, Michael
Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning
title Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning
title_full Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning
title_fullStr Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning
title_full_unstemmed Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning
title_short Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning
title_sort predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636173/
https://www.ncbi.nlm.nih.gov/pubmed/34174440
http://dx.doi.org/10.1016/j.ymthe.2021.06.017
work_keys_str_mv AT schwarzeradrian predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT talbotstevenr predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT selichanton predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT morganmichael predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT schottjulianew predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT dittrichbreiholzoliver predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT bastoneantonellal predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT weigelbettina predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT hatengcheong predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT dziadekvioletta predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT gijsbersrik predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT thrasheradrianj predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT staalfrankjt predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT gasparhubertb predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT modlichute predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT schambachaxel predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning
AT rothemichael predictinggenotoxicityofviralvectorsforstemcellgenetherapyusinggeneexpressionbasedmachinelearning