Cargando…
Mechanical Learning for Prediction of Sepsis-Associated Encephalopathy
Objective: The study aims to develop a mechanical learning model as a predictive model for predicting the appearance of sepsis-associated encephalopathy (SAE). Materials and Methods: The prediction model was developed in a primary cohort of 2,028 sepsis patients from June 2001 to October 2012, retri...
Autores principales: | Zhao, Lina, Wang, Yunying, Ge, Zengzheng, Zhu, Huadong, Li, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636425/ https://www.ncbi.nlm.nih.gov/pubmed/34867250 http://dx.doi.org/10.3389/fncom.2021.739265 |
Ejemplares similares
-
Development and Validation of a Nomogram for the Prediction of Hospital Mortality of Patients With Encephalopathy Caused by Microbial Infection: A Retrospective Cohort Study
por: Zhao, Lina, et al.
Publicado: (2021) -
CLINICAL PHENOTYPES OF SEPSIS-ASSOCIATED ENCEPHALOPATHY: A RETROSPECTIVE COHORT STUDY
por: Lu, Xin, et al.
Publicado: (2023) -
Corrigendum: Development and Validation of a Nomogram for the Prediction of Hospital Mortality of Patients With Encephalopathy Caused by Microbial Infection: A Retrospective Cohort Study
por: Zhao, Lina, et al.
Publicado: (2021) -
New Strategies to Optimize Hemodynamics for Sepsis-Associated Encephalopathy
por: Zhao, Lina, et al.
Publicado: (2022) -
Prognosis of Patients with Sepsis and Non-Hepatic Hyperammonemia: A Cohort Study
por: Zhao, Lina, et al.
Publicado: (2020)