Cargando…
A Bayesian Generalized Explanatory Item Response Model to Account for Learning During the Test
The present paper introduces a new explanatory item response model to account for the learning that takes place during a psychometric test due to the repeated use of the operations involved in the items. The proposed model is an extension of the operation-specific learning model (Fischer and Formann...
Autores principales: | Lozano, José H., Revuelta, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636451/ https://www.ncbi.nlm.nih.gov/pubmed/34460068 http://dx.doi.org/10.1007/s11336-021-09786-x |
Ejemplares similares
-
Item Response Thresholds Models: A General Class of Models for Varying Types of Items
por: Tutz, Gerhard
Publicado: (2022) -
A Shadow-Test Approach to Adaptive Item Calibration
por: van der Linden, Wim J., et al.
Publicado: (2020) -
Factor Tree Copula Models for Item Response Data
por: Kadhem, Sayed H., et al.
Publicado: (2023) -
The Dirichlet Dual Response Model: An Item Response Model for Continuous Bounded Interval Responses
por: Kloft, Matthias, et al.
Publicado: (2023) -
A unified model-implied instrumental variable approach for structural equation modeling with mixed variables
por: Jin, Shaobo, et al.
Publicado: (2021)