Cargando…

Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis

Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics an...

Descripción completa

Detalles Bibliográficos
Autores principales: Casas-Arozamena, Carlos, Otero-Cacho, Alberto, Carnero, Bastian, Almenglo, Cristina, Aymerich, Maria, Alonso-Alconada, Lorena, Ferreiros, Alba, Abalo, Alicia, Bao-Varela, Carmen, Flores-Arias, Maria Teresa, Alvarez, Ezequiel, Munuzuri, Alberto P., Abal, Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636484/
https://www.ncbi.nlm.nih.gov/pubmed/34853364
http://dx.doi.org/10.1038/s41598-021-02482-x
_version_ 1784608538332495872
author Casas-Arozamena, Carlos
Otero-Cacho, Alberto
Carnero, Bastian
Almenglo, Cristina
Aymerich, Maria
Alonso-Alconada, Lorena
Ferreiros, Alba
Abalo, Alicia
Bao-Varela, Carmen
Flores-Arias, Maria Teresa
Alvarez, Ezequiel
Munuzuri, Alberto P.
Abal, Miguel
author_facet Casas-Arozamena, Carlos
Otero-Cacho, Alberto
Carnero, Bastian
Almenglo, Cristina
Aymerich, Maria
Alonso-Alconada, Lorena
Ferreiros, Alba
Abalo, Alicia
Bao-Varela, Carmen
Flores-Arias, Maria Teresa
Alvarez, Ezequiel
Munuzuri, Alberto P.
Abal, Miguel
author_sort Casas-Arozamena, Carlos
collection PubMed
description Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics and impact on the fate of the CTC. Here we mathematically explored the distribution of velocities and the corresponding streamlines at the bifurcations of large blood vessel and characterized an area of low-velocity at the carina of bifurcation that favours the residence of CTC. In addition to this fluid physics effect, the adhesive capabilities of the CTC provide with a biological competitive advantage resulting in a marginal but systematic arrest as evidenced by dynamic in vitro recirculation in Y-microchannels and by perfusion in in vivo mice models. Our results also demonstrate that viscosity, as a main determinant of the Reynolds number that define flow biomechanics, may be modulated to limit or impair CTC accumulation at the bifurcation of blood vessels, in agreement with the apparent positive effect observed in the clinical setting by anticoagulants in advanced oncology disease.
format Online
Article
Text
id pubmed-8636484
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86364842021-12-03 Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis Casas-Arozamena, Carlos Otero-Cacho, Alberto Carnero, Bastian Almenglo, Cristina Aymerich, Maria Alonso-Alconada, Lorena Ferreiros, Alba Abalo, Alicia Bao-Varela, Carmen Flores-Arias, Maria Teresa Alvarez, Ezequiel Munuzuri, Alberto P. Abal, Miguel Sci Rep Article Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics and impact on the fate of the CTC. Here we mathematically explored the distribution of velocities and the corresponding streamlines at the bifurcations of large blood vessel and characterized an area of low-velocity at the carina of bifurcation that favours the residence of CTC. In addition to this fluid physics effect, the adhesive capabilities of the CTC provide with a biological competitive advantage resulting in a marginal but systematic arrest as evidenced by dynamic in vitro recirculation in Y-microchannels and by perfusion in in vivo mice models. Our results also demonstrate that viscosity, as a main determinant of the Reynolds number that define flow biomechanics, may be modulated to limit or impair CTC accumulation at the bifurcation of blood vessels, in agreement with the apparent positive effect observed in the clinical setting by anticoagulants in advanced oncology disease. Nature Publishing Group UK 2021-12-01 /pmc/articles/PMC8636484/ /pubmed/34853364 http://dx.doi.org/10.1038/s41598-021-02482-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Casas-Arozamena, Carlos
Otero-Cacho, Alberto
Carnero, Bastian
Almenglo, Cristina
Aymerich, Maria
Alonso-Alconada, Lorena
Ferreiros, Alba
Abalo, Alicia
Bao-Varela, Carmen
Flores-Arias, Maria Teresa
Alvarez, Ezequiel
Munuzuri, Alberto P.
Abal, Miguel
Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title_full Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title_fullStr Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title_full_unstemmed Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title_short Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title_sort haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636484/
https://www.ncbi.nlm.nih.gov/pubmed/34853364
http://dx.doi.org/10.1038/s41598-021-02482-x
work_keys_str_mv AT casasarozamenacarlos haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT oterocachoalberto haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT carnerobastian haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT almenglocristina haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT aymerichmaria haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT alonsoalconadalorena haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT ferreirosalba haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT abaloalicia haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT baovarelacarmen haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT floresariasmariateresa haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT alvarezezequiel haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT munuzurialbertop haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT abalmiguel haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis