Cargando…
Shape matters: morphological metrics of glioblastoma imaging abnormalities as biomarkers of prognosis
Lacunarity, a quantitative morphological measure of how shapes fill space, and fractal dimension, a morphological measure of the complexity of pixel arrangement, have shown relationships with outcome across a variety of cancers. However, the application of these metrics to glioblastoma (GBM), a very...
Autores principales: | Curtin, Lee, Whitmire, Paula, White, Haylye, Bond, Kamila M., Mrugala, Maciej M., Hu, Leland S., Swanson, Kristin R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636508/ https://www.ncbi.nlm.nih.gov/pubmed/34853344 http://dx.doi.org/10.1038/s41598-021-02495-6 |
Ejemplares similares
-
Image-based metric of invasiveness predicts response to adjuvant temozolomide for primary glioblastoma
por: Massey, Susan Christine, et al.
Publicado: (2020) -
Assessment of Prognostic Value of Cystic Features in Glioblastoma Relative to Sex and Treatment With Standard-of-Care
por: Curtin, Lee, et al.
Publicado: (2020) -
Days gained response discriminates treatment response in patients with recurrent glioblastoma receiving bevacizumab-based therapies
por: Singleton, Kyle W, et al.
Publicado: (2020) -
Discriminating Survival Outcomes in Patients with Glioblastoma Using a Simulation-Based, Patient-Specific Response Metric
por: Neal, Maxwell Lewis, et al.
Publicado: (2013) -
An image-based modeling framework for predicting spatiotemporal brain cancer biology within individual patients
por: Bond, Kamila M., et al.
Publicado: (2023)