Cargando…
Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
The prediction of temperature effects from first principles is computationally demanding and typically too approximate for the engineering of high-temperature processes. Here, we introduce a hybrid approach combining zero-Kelvin first-principles calculations with a Gaussian process regression model...
Autores principales: | Garrido Torres, Jose Antonio, Gharakhanyan, Vahe, Artrith, Nongnuch, Eegholm, Tobias Hoffmann, Urban, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636515/ https://www.ncbi.nlm.nih.gov/pubmed/34853301 http://dx.doi.org/10.1038/s41467-021-27154-2 |
Ejemplares similares
-
Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications
por: Morawietz, Tobias, et al.
Publicado: (2020) -
The Kelvin and Temperature Measurements
por: Mangum, B. W., et al.
Publicado: (2001) -
Artificial
Intelligence-Aided Mapping of the Structure–Composition–Conductivity
Relationships of Glass–Ceramic Lithium Thiophosphate Electrolytes
por: Guo, Haoyue, et al.
Publicado: (2022) -
Kelvin
por: Aguilar Loyola, José
Publicado: (1989) -
Thermal conductance of Nb thin films at sub-kelvin temperatures
por: Feshchenko, A. V., et al.
Publicado: (2017)