Cargando…

Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures

The prediction of temperature effects from first principles is computationally demanding and typically too approximate for the engineering of high-temperature processes. Here, we introduce a hybrid approach combining zero-Kelvin first-principles calculations with a Gaussian process regression model...

Descripción completa

Detalles Bibliográficos
Autores principales: Garrido Torres, Jose Antonio, Gharakhanyan, Vahe, Artrith, Nongnuch, Eegholm, Tobias Hoffmann, Urban, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636515/
https://www.ncbi.nlm.nih.gov/pubmed/34853301
http://dx.doi.org/10.1038/s41467-021-27154-2

Ejemplares similares