Cargando…
The Physiological Effect of a Holoparasite Over a Cactus Along an Environmental Gradient
Echinopsis chiloensis is an endemic cactus from Chile, distributed in a temperature and rainfall gradient between 30° and 35° South latitude, with mean temperatures increasing and precipitation decreasing toward the north. It is the main host of the mistletoe Tristerix aphyllus, a holoparasite compl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636672/ https://www.ncbi.nlm.nih.gov/pubmed/34868160 http://dx.doi.org/10.3389/fpls.2021.763446 |
_version_ | 1784608575367151616 |
---|---|
author | Ossa, Carmen Gloria Aros-Mualin, Daniela Mujica, María Isabel Pérez, Fernanda |
author_facet | Ossa, Carmen Gloria Aros-Mualin, Daniela Mujica, María Isabel Pérez, Fernanda |
author_sort | Ossa, Carmen Gloria |
collection | PubMed |
description | Echinopsis chiloensis is an endemic cactus from Chile, distributed in a temperature and rainfall gradient between 30° and 35° South latitude, with mean temperatures increasing and precipitation decreasing toward the north. It is the main host of the mistletoe Tristerix aphyllus, a holoparasite completely dependent on the cactus for water, carbon, and minerals. In this study, we investigated the consequences of parasitism over the fitness and physiology of this cactus throughout its distribution range and how it is affected by the environment. We measured five functional traits in eight populations latitudinally distributed, the first three only for the host: reproductive fitness, stomatal traits (density and size), and photosynthesis (during winter and summer); and the last two for the host and parasite: stable isotopes (∂(13)C and ∂(15)N), and nutrients (carbon and nitrogen content). The results showed a negative effect of parasitism over fitness of infected cacti. However, the higher nitrogen concentrations in cactus tissues toward the south improved overall fitness. Regarding photosynthesis, we only observed a negative effect of parasitism during the dry season (summer), which is also negatively affected by the increase in summer temperatures and decrease in winter rainfall toward the north. There were no differences in nutrient concentration or in the isotopic signature of healthy and infected cacti. Conversely, we observed a higher carbon and lower nitrogen concentration in mistletoes than in cacti regardless of latitude. The loss of temperature seasonality toward the north increases the C:N ratio, and the values between the parasite and its host diverge. ∂(15)N was similar between parasites and hosts while ∂(13)C of the parasite was enriched when compared to its host. Overall, the infection by T. aphyllus affects Echinopsis chiloensis fitness but showed no strong effects over the cactus physiology, except for the summer photosynthesis. Therefore, our data revealed that E. chiloensis response to T. aphyllus infection is sensitive to environmental changes in a way that could be strongly impacted by the desertification projected for this area due to climate change. |
format | Online Article Text |
id | pubmed-8636672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86366722021-12-03 The Physiological Effect of a Holoparasite Over a Cactus Along an Environmental Gradient Ossa, Carmen Gloria Aros-Mualin, Daniela Mujica, María Isabel Pérez, Fernanda Front Plant Sci Plant Science Echinopsis chiloensis is an endemic cactus from Chile, distributed in a temperature and rainfall gradient between 30° and 35° South latitude, with mean temperatures increasing and precipitation decreasing toward the north. It is the main host of the mistletoe Tristerix aphyllus, a holoparasite completely dependent on the cactus for water, carbon, and minerals. In this study, we investigated the consequences of parasitism over the fitness and physiology of this cactus throughout its distribution range and how it is affected by the environment. We measured five functional traits in eight populations latitudinally distributed, the first three only for the host: reproductive fitness, stomatal traits (density and size), and photosynthesis (during winter and summer); and the last two for the host and parasite: stable isotopes (∂(13)C and ∂(15)N), and nutrients (carbon and nitrogen content). The results showed a negative effect of parasitism over fitness of infected cacti. However, the higher nitrogen concentrations in cactus tissues toward the south improved overall fitness. Regarding photosynthesis, we only observed a negative effect of parasitism during the dry season (summer), which is also negatively affected by the increase in summer temperatures and decrease in winter rainfall toward the north. There were no differences in nutrient concentration or in the isotopic signature of healthy and infected cacti. Conversely, we observed a higher carbon and lower nitrogen concentration in mistletoes than in cacti regardless of latitude. The loss of temperature seasonality toward the north increases the C:N ratio, and the values between the parasite and its host diverge. ∂(15)N was similar between parasites and hosts while ∂(13)C of the parasite was enriched when compared to its host. Overall, the infection by T. aphyllus affects Echinopsis chiloensis fitness but showed no strong effects over the cactus physiology, except for the summer photosynthesis. Therefore, our data revealed that E. chiloensis response to T. aphyllus infection is sensitive to environmental changes in a way that could be strongly impacted by the desertification projected for this area due to climate change. Frontiers Media S.A. 2021-11-18 /pmc/articles/PMC8636672/ /pubmed/34868160 http://dx.doi.org/10.3389/fpls.2021.763446 Text en Copyright © 2021 Ossa, Aros-Mualin, Mujica and Pérez. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Ossa, Carmen Gloria Aros-Mualin, Daniela Mujica, María Isabel Pérez, Fernanda The Physiological Effect of a Holoparasite Over a Cactus Along an Environmental Gradient |
title | The Physiological Effect of a Holoparasite Over a Cactus Along an Environmental Gradient |
title_full | The Physiological Effect of a Holoparasite Over a Cactus Along an Environmental Gradient |
title_fullStr | The Physiological Effect of a Holoparasite Over a Cactus Along an Environmental Gradient |
title_full_unstemmed | The Physiological Effect of a Holoparasite Over a Cactus Along an Environmental Gradient |
title_short | The Physiological Effect of a Holoparasite Over a Cactus Along an Environmental Gradient |
title_sort | physiological effect of a holoparasite over a cactus along an environmental gradient |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636672/ https://www.ncbi.nlm.nih.gov/pubmed/34868160 http://dx.doi.org/10.3389/fpls.2021.763446 |
work_keys_str_mv | AT ossacarmengloria thephysiologicaleffectofaholoparasiteoveracactusalonganenvironmentalgradient AT arosmualindaniela thephysiologicaleffectofaholoparasiteoveracactusalonganenvironmentalgradient AT mujicamariaisabel thephysiologicaleffectofaholoparasiteoveracactusalonganenvironmentalgradient AT perezfernanda thephysiologicaleffectofaholoparasiteoveracactusalonganenvironmentalgradient AT ossacarmengloria physiologicaleffectofaholoparasiteoveracactusalonganenvironmentalgradient AT arosmualindaniela physiologicaleffectofaholoparasiteoveracactusalonganenvironmentalgradient AT mujicamariaisabel physiologicaleffectofaholoparasiteoveracactusalonganenvironmentalgradient AT perezfernanda physiologicaleffectofaholoparasiteoveracactusalonganenvironmentalgradient |