Cargando…

Identification of a Five Autophagy Subtype-Related Gene Expression Pattern for Improving the Prognosis of Lung Adenocarcinoma

Background: Autophagy plays an important role in lung adenocarcinoma (LUAD). In this study, we aimed to explore the autophagy-related gene (ARG) expression pattern and to identify promising autophagy-related biomarkers to improve the prognosis of LUAD. Methods: The gene expression profiles and clini...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Meng-Yu, Huo, Chen, Liu, Jian-Yu, Shi, Zhuang-E., Zhang, Wen-Di, Qu, Jia-Jia, Yue, Yue-Liang, Qu, Yi-Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636677/
https://www.ncbi.nlm.nih.gov/pubmed/34869345
http://dx.doi.org/10.3389/fcell.2021.756911
_version_ 1784608576574062592
author Zhang, Meng-Yu
Huo, Chen
Liu, Jian-Yu
Shi, Zhuang-E.
Zhang, Wen-Di
Qu, Jia-Jia
Yue, Yue-Liang
Qu, Yi-Qing
author_facet Zhang, Meng-Yu
Huo, Chen
Liu, Jian-Yu
Shi, Zhuang-E.
Zhang, Wen-Di
Qu, Jia-Jia
Yue, Yue-Liang
Qu, Yi-Qing
author_sort Zhang, Meng-Yu
collection PubMed
description Background: Autophagy plays an important role in lung adenocarcinoma (LUAD). In this study, we aimed to explore the autophagy-related gene (ARG) expression pattern and to identify promising autophagy-related biomarkers to improve the prognosis of LUAD. Methods: The gene expression profiles and clinical information of LUAD patients were downloaded from the Cancer Genome Atlas (TCGA), and validation cohort information was extracted from the Gene Expression Omnibus database. The Human Autophagy Database (HADb) was used to extract ARGs. Gene expression data were analyzed using the limma package and visualized using the ggplot2 package as well as the pheatmap package in R software. Functional enrichment analysis was also performed for the differentially expressed ARGs (DEARGs). Then, consensus clustering revealed autophagy-related tumor subtypes, and differentially expressed genes (DEGs) were screened according to the subtypes. Next, the univariate Cox and multivariate Cox regression analyses were used to identify independent prognostic ARGs. After overlapping DEGs and the independent prognostic ARGs, the predictive risk model was established and validated. Correlation analyses between ARGs and clinicopathological variables were also explored. Finally, the TIMER and TISIDB databases were used to further explore the correlation analysis between immune cell infiltration levels and the risk score as well as clinicopathological variables in the predictive risk model. Results: A total of 222 genes from the HADb were identified as ARGs, and 28 of the 222 genes were pooled as DEARGs. The most significant GO term was autophagy (p = 3.05E-07), and KEGG analysis results indicated that 28 DEARGs were significantly enriched in the ErbB signaling pathway (p < 0.001). Then, consensus clustering analysis divided the LUAD into two clusters, and a total of 168 DEGs were identified according to cluster subtypes. Then univariate and multivariate Cox regression analyses were used to identify 12 genes that could serve as independent prognostic indicators. After overlapping 168 DEGs and 12 genes, 10 genes (ATG4A, BAK1, CAPNS1, CCR2, CTSD, EIF2AK3, ITGB1, MBTPS2, SPHK1, ST13) were selected for the further exploration of the prognostic pattern. Survival analysis results indicated that this risk model identified the prognosis (p = 4.379E-10). Combined with the correlation analysis results between ARGs and clinicopathological variables, five ARGs were screened as prognostic genes. Among them, SPHK1 expression levels were positively correlated with CD4(+) T cells and dendritic cell infiltration levels. Conclusions: In this study, we constructed a predictive risk model and identified a five autophagy subtype-related gene expression pattern to improve the prognosis of LUAD. Understanding the subtypes of LUAD is helpful to accurately characterize the LUAD and develop personalized treatment.
format Online
Article
Text
id pubmed-8636677
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-86366772021-12-03 Identification of a Five Autophagy Subtype-Related Gene Expression Pattern for Improving the Prognosis of Lung Adenocarcinoma Zhang, Meng-Yu Huo, Chen Liu, Jian-Yu Shi, Zhuang-E. Zhang, Wen-Di Qu, Jia-Jia Yue, Yue-Liang Qu, Yi-Qing Front Cell Dev Biol Cell and Developmental Biology Background: Autophagy plays an important role in lung adenocarcinoma (LUAD). In this study, we aimed to explore the autophagy-related gene (ARG) expression pattern and to identify promising autophagy-related biomarkers to improve the prognosis of LUAD. Methods: The gene expression profiles and clinical information of LUAD patients were downloaded from the Cancer Genome Atlas (TCGA), and validation cohort information was extracted from the Gene Expression Omnibus database. The Human Autophagy Database (HADb) was used to extract ARGs. Gene expression data were analyzed using the limma package and visualized using the ggplot2 package as well as the pheatmap package in R software. Functional enrichment analysis was also performed for the differentially expressed ARGs (DEARGs). Then, consensus clustering revealed autophagy-related tumor subtypes, and differentially expressed genes (DEGs) were screened according to the subtypes. Next, the univariate Cox and multivariate Cox regression analyses were used to identify independent prognostic ARGs. After overlapping DEGs and the independent prognostic ARGs, the predictive risk model was established and validated. Correlation analyses between ARGs and clinicopathological variables were also explored. Finally, the TIMER and TISIDB databases were used to further explore the correlation analysis between immune cell infiltration levels and the risk score as well as clinicopathological variables in the predictive risk model. Results: A total of 222 genes from the HADb were identified as ARGs, and 28 of the 222 genes were pooled as DEARGs. The most significant GO term was autophagy (p = 3.05E-07), and KEGG analysis results indicated that 28 DEARGs were significantly enriched in the ErbB signaling pathway (p < 0.001). Then, consensus clustering analysis divided the LUAD into two clusters, and a total of 168 DEGs were identified according to cluster subtypes. Then univariate and multivariate Cox regression analyses were used to identify 12 genes that could serve as independent prognostic indicators. After overlapping 168 DEGs and 12 genes, 10 genes (ATG4A, BAK1, CAPNS1, CCR2, CTSD, EIF2AK3, ITGB1, MBTPS2, SPHK1, ST13) were selected for the further exploration of the prognostic pattern. Survival analysis results indicated that this risk model identified the prognosis (p = 4.379E-10). Combined with the correlation analysis results between ARGs and clinicopathological variables, five ARGs were screened as prognostic genes. Among them, SPHK1 expression levels were positively correlated with CD4(+) T cells and dendritic cell infiltration levels. Conclusions: In this study, we constructed a predictive risk model and identified a five autophagy subtype-related gene expression pattern to improve the prognosis of LUAD. Understanding the subtypes of LUAD is helpful to accurately characterize the LUAD and develop personalized treatment. Frontiers Media S.A. 2021-11-18 /pmc/articles/PMC8636677/ /pubmed/34869345 http://dx.doi.org/10.3389/fcell.2021.756911 Text en Copyright © 2021 Zhang, Huo, Liu, Shi, Zhang, Qu, Yue and Qu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cell and Developmental Biology
Zhang, Meng-Yu
Huo, Chen
Liu, Jian-Yu
Shi, Zhuang-E.
Zhang, Wen-Di
Qu, Jia-Jia
Yue, Yue-Liang
Qu, Yi-Qing
Identification of a Five Autophagy Subtype-Related Gene Expression Pattern for Improving the Prognosis of Lung Adenocarcinoma
title Identification of a Five Autophagy Subtype-Related Gene Expression Pattern for Improving the Prognosis of Lung Adenocarcinoma
title_full Identification of a Five Autophagy Subtype-Related Gene Expression Pattern for Improving the Prognosis of Lung Adenocarcinoma
title_fullStr Identification of a Five Autophagy Subtype-Related Gene Expression Pattern for Improving the Prognosis of Lung Adenocarcinoma
title_full_unstemmed Identification of a Five Autophagy Subtype-Related Gene Expression Pattern for Improving the Prognosis of Lung Adenocarcinoma
title_short Identification of a Five Autophagy Subtype-Related Gene Expression Pattern for Improving the Prognosis of Lung Adenocarcinoma
title_sort identification of a five autophagy subtype-related gene expression pattern for improving the prognosis of lung adenocarcinoma
topic Cell and Developmental Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636677/
https://www.ncbi.nlm.nih.gov/pubmed/34869345
http://dx.doi.org/10.3389/fcell.2021.756911
work_keys_str_mv AT zhangmengyu identificationofafiveautophagysubtyperelatedgeneexpressionpatternforimprovingtheprognosisoflungadenocarcinoma
AT huochen identificationofafiveautophagysubtyperelatedgeneexpressionpatternforimprovingtheprognosisoflungadenocarcinoma
AT liujianyu identificationofafiveautophagysubtyperelatedgeneexpressionpatternforimprovingtheprognosisoflungadenocarcinoma
AT shizhuange identificationofafiveautophagysubtyperelatedgeneexpressionpatternforimprovingtheprognosisoflungadenocarcinoma
AT zhangwendi identificationofafiveautophagysubtyperelatedgeneexpressionpatternforimprovingtheprognosisoflungadenocarcinoma
AT qujiajia identificationofafiveautophagysubtyperelatedgeneexpressionpatternforimprovingtheprognosisoflungadenocarcinoma
AT yueyueliang identificationofafiveautophagysubtyperelatedgeneexpressionpatternforimprovingtheprognosisoflungadenocarcinoma
AT quyiqing identificationofafiveautophagysubtyperelatedgeneexpressionpatternforimprovingtheprognosisoflungadenocarcinoma