Cargando…
DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation
Carcinogenicity testing plays an essential role in identifying carcinogens in environmental chemistry and drug development. However, it is a time-consuming and label-intensive process to evaluate the carcinogenic potency with conventional 2-years rodent animal studies. Thus, there is an urgent need...
Autores principales: | Li, Ting, Tong, Weida, Roberts, Ruth, Liu, Zhichao, Thakkar, Shraddha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636933/ https://www.ncbi.nlm.nih.gov/pubmed/34870186 http://dx.doi.org/10.3389/frai.2021.757780 |
Ejemplares similares
-
Corrigendum: DeepCarc: Deep learning-powered carcinogenicity prediction using model-level representation
por: Li, Ting, et al.
Publicado: (2022) -
Adaptability of AI for safety evaluation in regulatory science: A case study of drug-induced liver injury
por: Connor, Skylar, et al.
Publicado: (2022) -
DeepCausality: A general AI-powered causal inference framework for free text: A case study of LiverTox
por: Wang, Xingqiao, et al.
Publicado: (2022) -
Personalized movie recommendations based on deep representation learning
por: Li, Luyao, et al.
Publicado: (2023) -
Accurate species identification of food-contaminating beetles with quality-improved elytral images and deep learning
por: Bisgin, Halil, et al.
Publicado: (2022)