Cargando…
Teeport: Break the Wall Between the Optimization Algorithms and Problems
Optimization algorithms/techniques such as genetic algorithm, particle swarm optimization, and Gaussian process have been widely used in the accelerator field to tackle complex design/online optimization problems. However, connecting the algorithm with the optimization problem can be difficult, as t...
Autores principales: | Zhang, Zhe, Huang, Xiaobiao, Song, Minghao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636989/ https://www.ncbi.nlm.nih.gov/pubmed/34870190 http://dx.doi.org/10.3389/fdata.2021.734650 |
Ejemplares similares
-
A novel interpretable machine learning algorithm to identify optimal parameter space for cancer growth
por: Coggan, Helena, et al.
Publicado: (2022) -
Editorial: Critical data and algorithm studies
por: Mayer, Katja, et al.
Publicado: (2023) -
A proposed scenario to improve the Ncut algorithm in segmentation
por: Tran, Nhu Y., et al.
Publicado: (2023) -
Algorithmic Accountability in Context. Socio-Technical Perspectives on Structural Causal Models
por: Poechhacker, Nikolaus, et al.
Publicado: (2021) -
Algorithmic Profiling of Job Seekers in Austria: How Austerity Politics Are Made Effective
por: Allhutter, Doris, et al.
Publicado: (2020)