Cargando…
Structure-based protein–ligand interaction fingerprints for binding affinity prediction
Binding affinity prediction (BAP) using protein–ligand complex structures is crucial to computer-aided drug design, but remains a challenging problem. To achieve efficient and accurate BAP, machine-learning scoring functions (SFs) based on a wide range of descriptors have been developed. Among those...
Autores principales: | Wang, Debby D., Chan, Moon-Tong, Yan, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637032/ https://www.ncbi.nlm.nih.gov/pubmed/34900139 http://dx.doi.org/10.1016/j.csbj.2021.11.018 |
Ejemplares similares
-
Protein-ligand binding affinity prediction based on profiles of intermolecular contacts
por: Wang, Debby D., et al.
Publicado: (2022) -
Neural networks prediction of the protein-ligand binding affinity with circular fingerprints
por: Yin, Zuode, et al.
Publicado: (2023) -
Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods
por: Wang, Debby D., et al.
Publicado: (2020) -
Development of a protein–ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions
por: Wójcikowski, Maciej, et al.
Publicado: (2019) -
SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors
por: Kumar, Surendra, et al.
Publicado: (2021)