Cargando…
Treatment plan comparison of proton vs photon radiotherapy for lower-grade gliomas
BACKGROUND AND PURPOSE: Patients with lower-grade gliomas are long-term survivors after radiotherapy and may benefit from the reduced dose to normal tissue achievable with proton therapy. Here, we aimed to quantify differences in dose to the uninvolved brain and contralateral hippocampus and compare...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637131/ https://www.ncbi.nlm.nih.gov/pubmed/34888422 http://dx.doi.org/10.1016/j.phro.2021.11.008 |
_version_ | 1784608680676687872 |
---|---|
author | Byskov, Camilla S. Hansen, Christian R. Dahlrot, Rikke H. Haldbo-Classen, Lene Haslund, Charlotte A. Kjær-Kristoffersen, Flemming Kristensen, Thomas O. Lassen-Ramshad, Yasmin Lukacova, Slávka Muhic, Aida Nyström, Petra W. Weber, Britta Kallehauge, Jesper F. |
author_facet | Byskov, Camilla S. Hansen, Christian R. Dahlrot, Rikke H. Haldbo-Classen, Lene Haslund, Charlotte A. Kjær-Kristoffersen, Flemming Kristensen, Thomas O. Lassen-Ramshad, Yasmin Lukacova, Slávka Muhic, Aida Nyström, Petra W. Weber, Britta Kallehauge, Jesper F. |
author_sort | Byskov, Camilla S. |
collection | PubMed |
description | BACKGROUND AND PURPOSE: Patients with lower-grade gliomas are long-term survivors after radiotherapy and may benefit from the reduced dose to normal tissue achievable with proton therapy. Here, we aimed to quantify differences in dose to the uninvolved brain and contralateral hippocampus and compare the risk of radiation-induced secondary cancer for photon and proton plans for lower-grade glioma patients. MATERIALS AND METHODS: Twenty-three patients were included in this in-silico planning comparative study and had photon and proton plans calculated (50.4 Gy(RBE = 1.1), 28 Fx) applying similar dose constraints to the target and organs at risk. Automatically calculated photon plans were generated with a 3 mm margin from clinical target volume (CTV) to planning target volume. Manual proton plans were generated using robust optimisation on the CTV. Dose metrics of organs at risk were compared using population mean dose-volume histograms and Wilcoxon signed-rank test. Secondary cancer risk per 10,000 persons per year (PPY) was estimated using dose-volume data and a risk model for secondary cancer induction. RESULTS: CTV coverage (V95%>98%) was similar for the two treatment modalities. Mean dose (D(mean)) to the uninvolved brain was significantly reduced from 21.5 Gy (median, IQR 17.1–24.4 Gy) with photons compared to 10.3 Gy(RBE) (8.1–13.9 Gy(RBE)) with protons. D(mean) to the contralateral hippocampus was significantly reduced from 6.5 Gy (5.4–11.7 Gy) with photons to 1.5 Gy(RBE) (0.4–6.8 Gy(RBE)) with protons. The estimated secondary cancer risk was reduced from 6.7 PPY (median, range 3.3–10.4 PPY) with photons to 3.0 PPY (1.3–7.5 PPY) with protons. CONCLUSION: A significant reduction in mean dose to uninvolved brain and contralateral hippocampus was found with proton planning. The estimated secondary cancer risk was reduced with proton therapy. |
format | Online Article Text |
id | pubmed-8637131 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-86371312021-12-08 Treatment plan comparison of proton vs photon radiotherapy for lower-grade gliomas Byskov, Camilla S. Hansen, Christian R. Dahlrot, Rikke H. Haldbo-Classen, Lene Haslund, Charlotte A. Kjær-Kristoffersen, Flemming Kristensen, Thomas O. Lassen-Ramshad, Yasmin Lukacova, Slávka Muhic, Aida Nyström, Petra W. Weber, Britta Kallehauge, Jesper F. Phys Imaging Radiat Oncol Original Research Article BACKGROUND AND PURPOSE: Patients with lower-grade gliomas are long-term survivors after radiotherapy and may benefit from the reduced dose to normal tissue achievable with proton therapy. Here, we aimed to quantify differences in dose to the uninvolved brain and contralateral hippocampus and compare the risk of radiation-induced secondary cancer for photon and proton plans for lower-grade glioma patients. MATERIALS AND METHODS: Twenty-three patients were included in this in-silico planning comparative study and had photon and proton plans calculated (50.4 Gy(RBE = 1.1), 28 Fx) applying similar dose constraints to the target and organs at risk. Automatically calculated photon plans were generated with a 3 mm margin from clinical target volume (CTV) to planning target volume. Manual proton plans were generated using robust optimisation on the CTV. Dose metrics of organs at risk were compared using population mean dose-volume histograms and Wilcoxon signed-rank test. Secondary cancer risk per 10,000 persons per year (PPY) was estimated using dose-volume data and a risk model for secondary cancer induction. RESULTS: CTV coverage (V95%>98%) was similar for the two treatment modalities. Mean dose (D(mean)) to the uninvolved brain was significantly reduced from 21.5 Gy (median, IQR 17.1–24.4 Gy) with photons compared to 10.3 Gy(RBE) (8.1–13.9 Gy(RBE)) with protons. D(mean) to the contralateral hippocampus was significantly reduced from 6.5 Gy (5.4–11.7 Gy) with photons to 1.5 Gy(RBE) (0.4–6.8 Gy(RBE)) with protons. The estimated secondary cancer risk was reduced from 6.7 PPY (median, range 3.3–10.4 PPY) with photons to 3.0 PPY (1.3–7.5 PPY) with protons. CONCLUSION: A significant reduction in mean dose to uninvolved brain and contralateral hippocampus was found with proton planning. The estimated secondary cancer risk was reduced with proton therapy. Elsevier 2021-11-28 /pmc/articles/PMC8637131/ /pubmed/34888422 http://dx.doi.org/10.1016/j.phro.2021.11.008 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Article Byskov, Camilla S. Hansen, Christian R. Dahlrot, Rikke H. Haldbo-Classen, Lene Haslund, Charlotte A. Kjær-Kristoffersen, Flemming Kristensen, Thomas O. Lassen-Ramshad, Yasmin Lukacova, Slávka Muhic, Aida Nyström, Petra W. Weber, Britta Kallehauge, Jesper F. Treatment plan comparison of proton vs photon radiotherapy for lower-grade gliomas |
title | Treatment plan comparison of proton vs photon radiotherapy for lower-grade gliomas |
title_full | Treatment plan comparison of proton vs photon radiotherapy for lower-grade gliomas |
title_fullStr | Treatment plan comparison of proton vs photon radiotherapy for lower-grade gliomas |
title_full_unstemmed | Treatment plan comparison of proton vs photon radiotherapy for lower-grade gliomas |
title_short | Treatment plan comparison of proton vs photon radiotherapy for lower-grade gliomas |
title_sort | treatment plan comparison of proton vs photon radiotherapy for lower-grade gliomas |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637131/ https://www.ncbi.nlm.nih.gov/pubmed/34888422 http://dx.doi.org/10.1016/j.phro.2021.11.008 |
work_keys_str_mv | AT byskovcamillas treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT hansenchristianr treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT dahlrotrikkeh treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT haldboclassenlene treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT haslundcharlottea treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT kjærkristoffersenflemming treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT kristensenthomaso treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT lassenramshadyasmin treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT lukacovaslavka treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT muhicaida treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT nystrompetraw treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT weberbritta treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas AT kallehaugejesperf treatmentplancomparisonofprotonvsphotonradiotherapyforlowergradegliomas |