Cargando…

Effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: A dataset from a 19-year field experiment

A long-term field experiment was conducted from 1989 to 2007 in northern France in a loamy soil to assess the cumulative effects of cropping systems (CSs) on soil compaction, soil porosity, soil structure, crop emergence and yield. Three CSs, including different crop rotations and cultivations (earl...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamichhane, Jay Ram, Boizard, Hubert, Dürr, Carolyne, Richard, Guy, Boiffin, Jean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637148/
https://www.ncbi.nlm.nih.gov/pubmed/34888406
http://dx.doi.org/10.1016/j.dib.2021.107581
_version_ 1784608683999625216
author Lamichhane, Jay Ram
Boizard, Hubert
Dürr, Carolyne
Richard, Guy
Boiffin, Jean
author_facet Lamichhane, Jay Ram
Boizard, Hubert
Dürr, Carolyne
Richard, Guy
Boiffin, Jean
author_sort Lamichhane, Jay Ram
collection PubMed
description A long-term field experiment was conducted from 1989 to 2007 in northern France in a loamy soil to assess the cumulative effects of cropping systems (CSs) on soil compaction, soil porosity, soil structure, crop emergence and yield. Three CSs, including different crop rotations and cultivations (early or late sowing and harvesting), were compared. CS I was the succession of spring pea/winter wheat/oilseed rape (flax from 2001)/winter wheat while CSs II and III were the succession of sugar beet/winter wheat/maize/winter wheat. The latter two CSs consisted of different sowing dates, based on two distinct decision rules aimed at minimizing the risk of soil compaction in the CS II or maximizing the duration of the crop in the CS III. The tillage system was only mouldboard ploughing up to 2000 while a new treatment with superficial tillage (i.e. at 6 cm depth) was integrated since then into the experiment to compare the effects of annual ploughing and reduced tillage on changes in soil structure over time. Soil water content was measured for each field operation by taking samples every 0.05 m up to a depth of 0.30 m in the topsoil. Soil compaction and soil structure was evaluated after each sowing using a morphological approach and soil bulk density measurements. The ‘‘profil cultural’’ method was used to map soil structure variations in the topsoil below the seedbed. Dry bulk density was measured with a gamma-ray transmission probe. Seedling emergence rates and crop yield were also measured in relation to CSs. This dataset represents an important description of the changes in the soil compaction level, crop emergence rates and yield, in relation to CSs and climate, and the overall impact on seedbed structure variations for major field crops under northern France conditions. This information can be used as input variables of several soil-crop models aiming at evaluating the impact of CSs and climate on soil compaction and seedbed structures.
format Online
Article
Text
id pubmed-8637148
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86371482021-12-08 Effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: A dataset from a 19-year field experiment Lamichhane, Jay Ram Boizard, Hubert Dürr, Carolyne Richard, Guy Boiffin, Jean Data Brief Data Article A long-term field experiment was conducted from 1989 to 2007 in northern France in a loamy soil to assess the cumulative effects of cropping systems (CSs) on soil compaction, soil porosity, soil structure, crop emergence and yield. Three CSs, including different crop rotations and cultivations (early or late sowing and harvesting), were compared. CS I was the succession of spring pea/winter wheat/oilseed rape (flax from 2001)/winter wheat while CSs II and III were the succession of sugar beet/winter wheat/maize/winter wheat. The latter two CSs consisted of different sowing dates, based on two distinct decision rules aimed at minimizing the risk of soil compaction in the CS II or maximizing the duration of the crop in the CS III. The tillage system was only mouldboard ploughing up to 2000 while a new treatment with superficial tillage (i.e. at 6 cm depth) was integrated since then into the experiment to compare the effects of annual ploughing and reduced tillage on changes in soil structure over time. Soil water content was measured for each field operation by taking samples every 0.05 m up to a depth of 0.30 m in the topsoil. Soil compaction and soil structure was evaluated after each sowing using a morphological approach and soil bulk density measurements. The ‘‘profil cultural’’ method was used to map soil structure variations in the topsoil below the seedbed. Dry bulk density was measured with a gamma-ray transmission probe. Seedling emergence rates and crop yield were also measured in relation to CSs. This dataset represents an important description of the changes in the soil compaction level, crop emergence rates and yield, in relation to CSs and climate, and the overall impact on seedbed structure variations for major field crops under northern France conditions. This information can be used as input variables of several soil-crop models aiming at evaluating the impact of CSs and climate on soil compaction and seedbed structures. Elsevier 2021-11-16 /pmc/articles/PMC8637148/ /pubmed/34888406 http://dx.doi.org/10.1016/j.dib.2021.107581 Text en © 2021 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Data Article
Lamichhane, Jay Ram
Boizard, Hubert
Dürr, Carolyne
Richard, Guy
Boiffin, Jean
Effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: A dataset from a 19-year field experiment
title Effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: A dataset from a 19-year field experiment
title_full Effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: A dataset from a 19-year field experiment
title_fullStr Effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: A dataset from a 19-year field experiment
title_full_unstemmed Effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: A dataset from a 19-year field experiment
title_short Effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: A dataset from a 19-year field experiment
title_sort effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: a dataset from a 19-year field experiment
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637148/
https://www.ncbi.nlm.nih.gov/pubmed/34888406
http://dx.doi.org/10.1016/j.dib.2021.107581
work_keys_str_mv AT lamichhanejayram effectofcroppingsystemsandclimateonsoilphysicalcharacteristicsfieldcropemergenceandyieldadatasetfroma19yearfieldexperiment
AT boizardhubert effectofcroppingsystemsandclimateonsoilphysicalcharacteristicsfieldcropemergenceandyieldadatasetfroma19yearfieldexperiment
AT durrcarolyne effectofcroppingsystemsandclimateonsoilphysicalcharacteristicsfieldcropemergenceandyieldadatasetfroma19yearfieldexperiment
AT richardguy effectofcroppingsystemsandclimateonsoilphysicalcharacteristicsfieldcropemergenceandyieldadatasetfroma19yearfieldexperiment
AT boiffinjean effectofcroppingsystemsandclimateonsoilphysicalcharacteristicsfieldcropemergenceandyieldadatasetfroma19yearfieldexperiment